summaryrefslogtreecommitdiff
path: root/lib/lib8tion/lib8tion.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/lib8tion/lib8tion.h')
-rw-r--r--lib/lib8tion/lib8tion.h934
1 files changed, 0 insertions, 934 deletions
diff --git a/lib/lib8tion/lib8tion.h b/lib/lib8tion/lib8tion.h
deleted file mode 100644
index 4c770cbcb5..0000000000
--- a/lib/lib8tion/lib8tion.h
+++ /dev/null
@@ -1,934 +0,0 @@
-#ifndef __INC_LIB8TION_H
-#define __INC_LIB8TION_H
-
-/*
-
- Fast, efficient 8-bit math functions specifically
- designed for high-performance LED programming.
-
- Because of the AVR(Arduino) and ARM assembly language
- implementations provided, using these functions often
- results in smaller and faster code than the equivalent
- program using plain "C" arithmetic and logic.
-
-
- Included are:
-
-
- - Saturating unsigned 8-bit add and subtract.
- Instead of wrapping around if an overflow occurs,
- these routines just 'clamp' the output at a maxumum
- of 255, or a minimum of 0. Useful for adding pixel
- values. E.g., qadd8( 200, 100) = 255.
-
- qadd8( i, j) == MIN( (i + j), 0xFF )
- qsub8( i, j) == MAX( (i - j), 0 )
-
- - Saturating signed 8-bit ("7-bit") add.
- qadd7( i, j) == MIN( (i + j), 0x7F)
-
-
- - Scaling (down) of unsigned 8- and 16- bit values.
- Scaledown value is specified in 1/256ths.
- scale8( i, sc) == (i * sc) / 256
- scale16by8( i, sc) == (i * sc) / 256
-
- Example: scaling a 0-255 value down into a
- range from 0-99:
- downscaled = scale8( originalnumber, 100);
-
- A special version of scale8 is provided for scaling
- LED brightness values, to make sure that they don't
- accidentally scale down to total black at low
- dimming levels, since that would look wrong:
- scale8_video( i, sc) = ((i * sc) / 256) +? 1
-
- Example: reducing an LED brightness by a
- dimming factor:
- new_bright = scale8_video( orig_bright, dimming);
-
-
- - Fast 8- and 16- bit unsigned random numbers.
- Significantly faster than Arduino random(), but
- also somewhat less random. You can add entropy.
- random8() == random from 0..255
- random8( n) == random from 0..(N-1)
- random8( n, m) == random from N..(M-1)
-
- random16() == random from 0..65535
- random16( n) == random from 0..(N-1)
- random16( n, m) == random from N..(M-1)
-
- random16_set_seed( k) == seed = k
- random16_add_entropy( k) == seed += k
-
-
- - Absolute value of a signed 8-bit value.
- abs8( i) == abs( i)
-
-
- - 8-bit math operations which return 8-bit values.
- These are provided mostly for completeness,
- not particularly for performance.
- mul8( i, j) == (i * j) & 0xFF
- add8( i, j) == (i + j) & 0xFF
- sub8( i, j) == (i - j) & 0xFF
-
-
- - Fast 16-bit approximations of sin and cos.
- Input angle is a uint16_t from 0-65535.
- Output is a signed int16_t from -32767 to 32767.
- sin16( x) == sin( (x/32768.0) * pi) * 32767
- cos16( x) == cos( (x/32768.0) * pi) * 32767
- Accurate to more than 99% in all cases.
-
- - Fast 8-bit approximations of sin and cos.
- Input angle is a uint8_t from 0-255.
- Output is an UNsigned uint8_t from 0 to 255.
- sin8( x) == (sin( (x/128.0) * pi) * 128) + 128
- cos8( x) == (cos( (x/128.0) * pi) * 128) + 128
- Accurate to within about 2%.
-
-
- - Fast 8-bit "easing in/out" function.
- ease8InOutCubic(x) == 3(x^i) - 2(x^3)
- ease8InOutApprox(x) ==
- faster, rougher, approximation of cubic easing
- ease8InOutQuad(x) == quadratic (vs cubic) easing
-
- - Cubic, Quadratic, and Triangle wave functions.
- Input is a uint8_t representing phase withing the wave,
- similar to how sin8 takes an angle 'theta'.
- Output is a uint8_t representing the amplitude of
- the wave at that point.
- cubicwave8( x)
- quadwave8( x)
- triwave8( x)
-
- - Square root for 16-bit integers. About three times
- faster and five times smaller than Arduino's built-in
- generic 32-bit sqrt routine.
- sqrt16( uint16_t x ) == sqrt( x)
-
- - Dimming and brightening functions for 8-bit
- light values.
- dim8_video( x) == scale8_video( x, x)
- dim8_raw( x) == scale8( x, x)
- dim8_lin( x) == (x<128) ? ((x+1)/2) : scale8(x,x)
- brighten8_video( x) == 255 - dim8_video( 255 - x)
- brighten8_raw( x) == 255 - dim8_raw( 255 - x)
- brighten8_lin( x) == 255 - dim8_lin( 255 - x)
- The dimming functions in particular are suitable
- for making LED light output appear more 'linear'.
-
-
- - Linear interpolation between two values, with the
- fraction between them expressed as an 8- or 16-bit
- fixed point fraction (fract8 or fract16).
- lerp8by8( fromU8, toU8, fract8 )
- lerp16by8( fromU16, toU16, fract8 )
- lerp15by8( fromS16, toS16, fract8 )
- == from + (( to - from ) * fract8) / 256)
- lerp16by16( fromU16, toU16, fract16 )
- == from + (( to - from ) * fract16) / 65536)
- map8( in, rangeStart, rangeEnd)
- == map( in, 0, 255, rangeStart, rangeEnd);
-
- - Optimized memmove, memcpy, and memset, that are
- faster than standard avr-libc 1.8.
- memmove8( dest, src, bytecount)
- memcpy8( dest, src, bytecount)
- memset8( buf, value, bytecount)
-
- - Beat generators which return sine or sawtooth
- waves in a specified number of Beats Per Minute.
- Sine wave beat generators can specify a low and
- high range for the output. Sawtooth wave beat
- generators always range 0-255 or 0-65535.
- beatsin8( BPM, low8, high8)
- = (sine(beatphase) * (high8-low8)) + low8
- beatsin16( BPM, low16, high16)
- = (sine(beatphase) * (high16-low16)) + low16
- beatsin88( BPM88, low16, high16)
- = (sine(beatphase) * (high16-low16)) + low16
- beat8( BPM) = 8-bit repeating sawtooth wave
- beat16( BPM) = 16-bit repeating sawtooth wave
- beat88( BPM88) = 16-bit repeating sawtooth wave
- BPM is beats per minute in either simple form
- e.g. 120, or Q8.8 fixed-point form.
- BPM88 is beats per minute in ONLY Q8.8 fixed-point
- form.
-
-Lib8tion is pronounced like 'libation': lie-BAY-shun
-
-*/
-
-
-
-#include <stdint.h>
-
-#define LIB8STATIC static inline
-#define LIB8STATIC_ALWAYS_INLINE static inline
-
-#if !defined(__AVR__)
-#include <string.h>
-// for memmove, memcpy, and memset if not defined here
-#endif
-
-#if defined(__arm__)
-
-#if defined(FASTLED_TEENSY3)
-// Can use Cortex M4 DSP instructions
-#define QADD8_C 0
-#define QADD7_C 0
-#define QADD8_ARM_DSP_ASM 1
-#define QADD7_ARM_DSP_ASM 1
-#else
-// Generic ARM
-#define QADD8_C 1
-#define QADD7_C 1
-#endif
-
-#define QSUB8_C 1
-#define SCALE8_C 1
-#define SCALE16BY8_C 1
-#define SCALE16_C 1
-#define ABS8_C 1
-#define MUL8_C 1
-#define QMUL8_C 1
-#define ADD8_C 1
-#define SUB8_C 1
-#define EASE8_C 1
-#define AVG8_C 1
-#define AVG7_C 1
-#define AVG16_C 1
-#define AVG15_C 1
-#define BLEND8_C 1
-
-
-#elif defined(__AVR__)
-
-// AVR ATmega and friends Arduino
-
-#define QADD8_C 0
-#define QADD7_C 0
-#define QSUB8_C 0
-#define ABS8_C 0
-#define ADD8_C 0
-#define SUB8_C 0
-#define AVG8_C 0
-#define AVG7_C 0
-#define AVG16_C 0
-#define AVG15_C 0
-
-#define QADD8_AVRASM 1
-#define QADD7_AVRASM 1
-#define QSUB8_AVRASM 1
-#define ABS8_AVRASM 1
-#define ADD8_AVRASM 1
-#define SUB8_AVRASM 1
-#define AVG8_AVRASM 1
-#define AVG7_AVRASM 1
-#define AVG16_AVRASM 1
-#define AVG15_AVRASM 1
-
-// Note: these require hardware MUL instruction
-// -- sorry, ATtiny!
-#if !defined(LIB8_ATTINY)
-#define SCALE8_C 0
-#define SCALE16BY8_C 0
-#define SCALE16_C 0
-#define MUL8_C 0
-#define QMUL8_C 0
-#define EASE8_C 0
-#define BLEND8_C 0
-#define SCALE8_AVRASM 1
-#define SCALE16BY8_AVRASM 1
-#define SCALE16_AVRASM 1
-#define MUL8_AVRASM 1
-#define QMUL8_AVRASM 1
-#define EASE8_AVRASM 1
-#define CLEANUP_R1_AVRASM 1
-#define BLEND8_AVRASM 1
-#else
-// On ATtiny, we just use C implementations
-#define SCALE8_C 1
-#define SCALE16BY8_C 1
-#define SCALE16_C 1
-#define MUL8_C 1
-#define QMUL8_C 1
-#define EASE8_C 1
-#define BLEND8_C 1
-#define SCALE8_AVRASM 0
-#define SCALE16BY8_AVRASM 0
-#define SCALE16_AVRASM 0
-#define MUL8_AVRASM 0
-#define QMUL8_AVRASM 0
-#define EASE8_AVRASM 0
-#define BLEND8_AVRASM 0
-#endif
-
-#else
-
-// unspecified architecture, so
-// no ASM, everything in C
-#define QADD8_C 1
-#define QADD7_C 1
-#define QSUB8_C 1
-#define SCALE8_C 1
-#define SCALE16BY8_C 1
-#define SCALE16_C 1
-#define ABS8_C 1
-#define MUL8_C 1
-#define QMUL8_C 1
-#define ADD8_C 1
-#define SUB8_C 1
-#define EASE8_C 1
-#define AVG8_C 1
-#define AVG7_C 1
-#define AVG16_C 1
-#define AVG15_C 1
-#define BLEND8_C 1
-
-#endif
-
-///@defgroup lib8tion Fast math functions
-///A variety of functions for working with numbers.
-///@{
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// typdefs for fixed-point fractional types.
-//
-// sfract7 should be interpreted as signed 128ths.
-// fract8 should be interpreted as unsigned 256ths.
-// sfract15 should be interpreted as signed 32768ths.
-// fract16 should be interpreted as unsigned 65536ths.
-//
-// Example: if a fract8 has the value "64", that should be interpreted
-// as 64/256ths, or one-quarter.
-//
-//
-// fract8 range is 0 to 0.99609375
-// in steps of 0.00390625
-//
-// sfract7 range is -0.9921875 to 0.9921875
-// in steps of 0.0078125
-//
-// fract16 range is 0 to 0.99998474121
-// in steps of 0.00001525878
-//
-// sfract15 range is -0.99996948242 to 0.99996948242
-// in steps of 0.00003051757
-//
-
-/// ANSI unsigned short _Fract. range is 0 to 0.99609375
-/// in steps of 0.00390625
-typedef uint8_t fract8; ///< ANSI: unsigned short _Fract
-
-/// ANSI: signed short _Fract. range is -0.9921875 to 0.9921875
-/// in steps of 0.0078125
-typedef int8_t sfract7; ///< ANSI: signed short _Fract
-
-/// ANSI: unsigned _Fract. range is 0 to 0.99998474121
-/// in steps of 0.00001525878
-typedef uint16_t fract16; ///< ANSI: unsigned _Fract
-
-/// ANSI: signed _Fract. range is -0.99996948242 to 0.99996948242
-/// in steps of 0.00003051757
-typedef int16_t sfract15; ///< ANSI: signed _Fract
-
-
-// accumXY types should be interpreted as X bits of integer,
-// and Y bits of fraction.
-// E.g., accum88 has 8 bits of int, 8 bits of fraction
-
-typedef uint16_t accum88; ///< ANSI: unsigned short _Accum. 8 bits int, 8 bits fraction
-typedef int16_t saccum78; ///< ANSI: signed short _Accum. 7 bits int, 8 bits fraction
-typedef uint32_t accum1616;///< ANSI: signed _Accum. 16 bits int, 16 bits fraction
-typedef int32_t saccum1516;///< ANSI: signed _Accum. 15 bits int, 16 bits fraction
-typedef uint16_t accum124; ///< no direct ANSI counterpart. 12 bits int, 4 bits fraction
-typedef int32_t saccum114;///< no direct ANSI counterpart. 1 bit int, 14 bits fraction
-
-
-
-#include "math8.h"
-#include "scale8.h"
-#include "random8.h"
-#include "trig8.h"
-
-///////////////////////////////////////////////////////////////////////
-
-
-
-
-
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// float-to-fixed and fixed-to-float conversions
-//
-// Note that anything involving a 'float' on AVR will be slower.
-
-/// sfract15ToFloat: conversion from sfract15 fixed point to
-/// IEEE754 32-bit float.
-LIB8STATIC float sfract15ToFloat( sfract15 y)
-{
- return y / 32768.0;
-}
-
-/// conversion from IEEE754 float in the range (-1,1)
-/// to 16-bit fixed point. Note that the extremes of
-/// one and negative one are NOT representable. The
-/// representable range is basically
-LIB8STATIC sfract15 floatToSfract15( float f)
-{
- return f * 32768.0;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// memmove8, memcpy8, and memset8:
-// alternatives to memmove, memcpy, and memset that are
-// faster on AVR than standard avr-libc 1.8
-
-#if defined(__AVR__)
-void * memmove8( void * dst, const void * src, uint16_t num );
-void * memcpy8 ( void * dst, const void * src, uint16_t num ) __attribute__ ((noinline));
-void * memset8 ( void * ptr, uint8_t value, uint16_t num ) __attribute__ ((noinline)) ;
-#else
-// on non-AVR platforms, these names just call standard libc.
-#define memmove8 memmove
-#define memcpy8 memcpy
-#define memset8 memset
-#endif
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// linear interpolation, such as could be used for Perlin noise, etc.
-//
-
-// A note on the structure of the lerp functions:
-// The cases for b>a and b<=a are handled separately for
-// speed: without knowing the relative order of a and b,
-// the value (a-b) might be overflow the width of a or b,
-// and have to be promoted to a wider, slower type.
-// To avoid that, we separate the two cases, and are able
-// to do all the math in the same width as the arguments,
-// which is much faster and smaller on AVR.
-
-/// linear interpolation between two unsigned 8-bit values,
-/// with 8-bit fraction
-LIB8STATIC uint8_t lerp8by8( uint8_t a, uint8_t b, fract8 frac)
-{
- uint8_t result;
- if( b > a) {
- uint8_t delta = b - a;
- uint8_t scaled = scale8( delta, frac);
- result = a + scaled;
- } else {
- uint8_t delta = a - b;
- uint8_t scaled = scale8( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// linear interpolation between two unsigned 16-bit values,
-/// with 16-bit fraction
-LIB8STATIC uint16_t lerp16by16( uint16_t a, uint16_t b, fract16 frac)
-{
- uint16_t result;
- if( b > a ) {
- uint16_t delta = b - a;
- uint16_t scaled = scale16(delta, frac);
- result = a + scaled;
- } else {
- uint16_t delta = a - b;
- uint16_t scaled = scale16( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// linear interpolation between two unsigned 16-bit values,
-/// with 8-bit fraction
-LIB8STATIC uint16_t lerp16by8( uint16_t a, uint16_t b, fract8 frac)
-{
- uint16_t result;
- if( b > a) {
- uint16_t delta = b - a;
- uint16_t scaled = scale16by8( delta, frac);
- result = a + scaled;
- } else {
- uint16_t delta = a - b;
- uint16_t scaled = scale16by8( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// linear interpolation between two signed 15-bit values,
-/// with 8-bit fraction
-LIB8STATIC int16_t lerp15by8( int16_t a, int16_t b, fract8 frac)
-{
- int16_t result;
- if( b > a) {
- uint16_t delta = b - a;
- uint16_t scaled = scale16by8( delta, frac);
- result = a + scaled;
- } else {
- uint16_t delta = a - b;
- uint16_t scaled = scale16by8( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// linear interpolation between two signed 15-bit values,
-/// with 8-bit fraction
-LIB8STATIC int16_t lerp15by16( int16_t a, int16_t b, fract16 frac)
-{
- int16_t result;
- if( b > a) {
- uint16_t delta = b - a;
- uint16_t scaled = scale16( delta, frac);
- result = a + scaled;
- } else {
- uint16_t delta = a - b;
- uint16_t scaled = scale16( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// map8: map from one full-range 8-bit value into a narrower
-/// range of 8-bit values, possibly a range of hues.
-///
-/// E.g. map myValue into a hue in the range blue..purple..pink..red
-/// hue = map8( myValue, HUE_BLUE, HUE_RED);
-///
-/// Combines nicely with the waveform functions (like sin8, etc)
-/// to produce continuous hue gradients back and forth:
-///
-/// hue = map8( sin8( myValue), HUE_BLUE, HUE_RED);
-///
-/// Mathematically simiar to lerp8by8, but arguments are more
-/// like Arduino's "map"; this function is similar to
-///
-/// map( in, 0, 255, rangeStart, rangeEnd)
-///
-/// but faster and specifically designed for 8-bit values.
-LIB8STATIC uint8_t map8( uint8_t in, uint8_t rangeStart, uint8_t rangeEnd)
-{
- uint8_t rangeWidth = rangeEnd - rangeStart;
- uint8_t out = scale8( in, rangeWidth);
- out += rangeStart;
- return out;
-}
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// easing functions; see http://easings.net
-//
-
-/// ease8InOutQuad: 8-bit quadratic ease-in / ease-out function
-/// Takes around 13 cycles on AVR
-#if EASE8_C == 1
-LIB8STATIC uint8_t ease8InOutQuad( uint8_t i)
-{
- uint8_t j = i;
- if( j & 0x80 ) {
- j = 255 - j;
- }
- uint8_t jj = scale8( j, j);
- uint8_t jj2 = jj << 1;
- if( i & 0x80 ) {
- jj2 = 255 - jj2;
- }
- return jj2;
-}
-
-#elif EASE8_AVRASM == 1
-// This AVR asm version of ease8InOutQuad preserves one more
-// low-bit of precision than the C version, and is also slightly
-// smaller and faster.
-LIB8STATIC uint8_t ease8InOutQuad(uint8_t val) {
- uint8_t j=val;
- asm volatile (
- "sbrc %[val], 7 \n"
- "com %[j] \n"
- "mul %[j], %[j] \n"
- "add r0, %[j] \n"
- "ldi %[j], 0 \n"
- "adc %[j], r1 \n"
- "lsl r0 \n" // carry = high bit of low byte of mul product
- "rol %[j] \n" // j = (j * 2) + carry // preserve add'l bit of precision
- "sbrc %[val], 7 \n"
- "com %[j] \n"
- "clr __zero_reg__ \n"
- : [j] "+&a" (j)
- : [val] "a" (val)
- : "r0", "r1"
- );
- return j;
-}
-
-#else
-#error "No implementation for ease8InOutQuad available."
-#endif
-
-/// ease16InOutQuad: 16-bit quadratic ease-in / ease-out function
-// C implementation at this point
-LIB8STATIC uint16_t ease16InOutQuad( uint16_t i)
-{
- uint16_t j = i;
- if( j & 0x8000 ) {
- j = 65535 - j;
- }
- uint16_t jj = scale16( j, j);
- uint16_t jj2 = jj << 1;
- if( i & 0x8000 ) {
- jj2 = 65535 - jj2;
- }
- return jj2;
-}
-
-
-/// ease8InOutCubic: 8-bit cubic ease-in / ease-out function
-/// Takes around 18 cycles on AVR
-LIB8STATIC fract8 ease8InOutCubic( fract8 i)
-{
- uint8_t ii = scale8_LEAVING_R1_DIRTY( i, i);
- uint8_t iii = scale8_LEAVING_R1_DIRTY( ii, i);
-
- uint16_t r1 = (3 * (uint16_t)(ii)) - ( 2 * (uint16_t)(iii));
-
- /* the code generated for the above *'s automatically
- cleans up R1, so there's no need to explicitily call
- cleanup_R1(); */
-
- uint8_t result = r1;
-
- // if we got "256", return 255:
- if( r1 & 0x100 ) {
- result = 255;
- }
- return result;
-}
-
-/// ease8InOutApprox: fast, rough 8-bit ease-in/ease-out function
-/// shaped approximately like 'ease8InOutCubic',
-/// it's never off by more than a couple of percent
-/// from the actual cubic S-curve, and it executes
-/// more than twice as fast. Use when the cycles
-/// are more important than visual smoothness.
-/// Asm version takes around 7 cycles on AVR.
-
-#if EASE8_C == 1
-LIB8STATIC fract8 ease8InOutApprox( fract8 i)
-{
- if( i < 64) {
- // start with slope 0.5
- i /= 2;
- } else if( i > (255 - 64)) {
- // end with slope 0.5
- i = 255 - i;
- i /= 2;
- i = 255 - i;
- } else {
- // in the middle, use slope 192/128 = 1.5
- i -= 64;
- i += (i / 2);
- i += 32;
- }
-
- return i;
-}
-
-#elif EASE8_AVRASM == 1
-LIB8STATIC uint8_t ease8InOutApprox( fract8 i)
-{
- // takes around 7 cycles on AVR
- asm volatile (
- " subi %[i], 64 \n\t"
- " cpi %[i], 128 \n\t"
- " brcc Lshift_%= \n\t"
-
- // middle case
- " mov __tmp_reg__, %[i] \n\t"
- " lsr __tmp_reg__ \n\t"
- " add %[i], __tmp_reg__ \n\t"
- " subi %[i], 224 \n\t"
- " rjmp Ldone_%= \n\t"
-
- // start or end case
- "Lshift_%=: \n\t"
- " lsr %[i] \n\t"
- " subi %[i], 96 \n\t"
-
- "Ldone_%=: \n\t"
-
- : [i] "+&a" (i)
- :
- : "r0", "r1"
- );
- return i;
-}
-#else
-#error "No implementation for ease8 available."
-#endif
-
-
-
-/// triwave8: triangle (sawtooth) wave generator. Useful for
-/// turning a one-byte ever-increasing value into a
-/// one-byte value that oscillates up and down.
-///
-/// input output
-/// 0..127 0..254 (positive slope)
-/// 128..255 254..0 (negative slope)
-///
-/// On AVR this function takes just three cycles.
-///
-LIB8STATIC uint8_t triwave8(uint8_t in)
-{
- if( in & 0x80) {
- in = 255 - in;
- }
- uint8_t out = in << 1;
- return out;
-}
-
-
-// quadwave8 and cubicwave8: S-shaped wave generators (like 'sine').
-// Useful for turning a one-byte 'counter' value into a
-// one-byte oscillating value that moves smoothly up and down,
-// with an 'acceleration' and 'deceleration' curve.
-//
-// These are even faster than 'sin8', and have
-// slightly different curve shapes.
-//
-
-/// quadwave8: quadratic waveform generator. Spends just a little more
-/// time at the limits than 'sine' does.
-LIB8STATIC uint8_t quadwave8(uint8_t in)
-{
- return ease8InOutQuad( triwave8( in));
-}
-
-/// cubicwave8: cubic waveform generator. Spends visibly more time
-/// at the limits than 'sine' does.
-LIB8STATIC uint8_t cubicwave8(uint8_t in)
-{
- return ease8InOutCubic( triwave8( in));
-}
-
-/// squarewave8: square wave generator. Useful for
-/// turning a one-byte ever-increasing value
-/// into a one-byte value that is either 0 or 255.
-/// The width of the output 'pulse' is
-/// determined by the pulsewidth argument:
-///
-///~~~
-/// If pulsewidth is 255, output is always 255.
-/// If pulsewidth < 255, then
-/// if input < pulsewidth then output is 255
-/// if input >= pulsewidth then output is 0
-///~~~
-///
-/// the output looking like:
-///
-///~~~
-/// 255 +--pulsewidth--+
-/// . | |
-/// 0 0 +--------(256-pulsewidth)--------
-///~~~
-///
-/// @param in
-/// @param pulsewidth
-/// @returns square wave output
-LIB8STATIC uint8_t squarewave8( uint8_t in, uint8_t pulsewidth)
-{
- if( in < pulsewidth || (pulsewidth == 255)) {
- return 255;
- } else {
- return 0;
- }
-}
-
-
-// Beat generators - These functions produce waves at a given
-// number of 'beats per minute'. Internally, they use
-// the Arduino function 'millis' to track elapsed time.
-// Accuracy is a bit better than one part in a thousand.
-//
-// beat8( BPM ) returns an 8-bit value that cycles 'BPM' times
-// per minute, rising from 0 to 255, resetting to zero,
-// rising up again, etc.. The output of this function
-// is suitable for feeding directly into sin8, and cos8,
-// triwave8, quadwave8, and cubicwave8.
-// beat16( BPM ) returns a 16-bit value that cycles 'BPM' times
-// per minute, rising from 0 to 65535, resetting to zero,
-// rising up again, etc. The output of this function is
-// suitable for feeding directly into sin16 and cos16.
-// beat88( BPM88) is the same as beat16, except that the BPM88 argument
-// MUST be in Q8.8 fixed point format, e.g. 120BPM must
-// be specified as 120*256 = 30720.
-// beatsin8( BPM, uint8_t low, uint8_t high) returns an 8-bit value that
-// rises and falls in a sine wave, 'BPM' times per minute,
-// between the values of 'low' and 'high'.
-// beatsin16( BPM, uint16_t low, uint16_t high) returns a 16-bit value
-// that rises and falls in a sine wave, 'BPM' times per
-// minute, between the values of 'low' and 'high'.
-// beatsin88( BPM88, ...) is the same as beatsin16, except that the
-// BPM88 argument MUST be in Q8.8 fixed point format,
-// e.g. 120BPM must be specified as 120*256 = 30720.
-//
-// BPM can be supplied two ways. The simpler way of specifying BPM is as
-// a simple 8-bit integer from 1-255, (e.g., "120").
-// The more sophisticated way of specifying BPM allows for fractional
-// "Q8.8" fixed point number (an 'accum88') with an 8-bit integer part and
-// an 8-bit fractional part. The easiest way to construct this is to multiply
-// a floating point BPM value (e.g. 120.3) by 256, (e.g. resulting in 30796
-// in this case), and pass that as the 16-bit BPM argument.
-// "BPM88" MUST always be specified in Q8.8 format.
-//
-// Originally designed to make an entire animation project pulse with brightness.
-// For that effect, add this line just above your existing call to "FastLED.show()":
-//
-// uint8_t bright = beatsin8( 60 /*BPM*/, 192 /*dimmest*/, 255 /*brightest*/ ));
-// FastLED.setBrightness( bright );
-// FastLED.show();
-//
-// The entire animation will now pulse between brightness 192 and 255 once per second.
-
-
-// The beat generators need access to a millisecond counter.
-// On Arduino, this is "millis()". On other platforms, you'll
-// need to provide a function with this signature:
-// uint32_t get_millisecond_timer();
-// that provides similar functionality.
-// You can also force use of the get_millisecond_timer function
-// by #defining USE_GET_MILLISECOND_TIMER.
-#if (defined(ARDUINO) || defined(SPARK) || defined(FASTLED_HAS_MILLIS)) && !defined(USE_GET_MILLISECOND_TIMER)
-// Forward declaration of Arduino function 'millis'.
-//uint32_t millis();
-#define GET_MILLIS millis
-#else
-uint32_t get_millisecond_timer(void);
-#define GET_MILLIS get_millisecond_timer
-#endif
-
-// beat16 generates a 16-bit 'sawtooth' wave at a given BPM,
-/// with BPM specified in Q8.8 fixed-point format; e.g.
-/// for this function, 120 BPM MUST BE specified as
-/// 120*256 = 30720.
-/// If you just want to specify "120", use beat16 or beat8.
-LIB8STATIC uint16_t beat88( accum88 beats_per_minute_88, uint32_t timebase)
-{
- // BPM is 'beats per minute', or 'beats per 60000ms'.
- // To avoid using the (slower) division operator, we
- // want to convert 'beats per 60000ms' to 'beats per 65536ms',
- // and then use a simple, fast bit-shift to divide by 65536.
- //
- // The ratio 65536:60000 is 279.620266667:256; we'll call it 280:256.
- // The conversion is accurate to about 0.05%, more or less,
- // e.g. if you ask for "120 BPM", you'll get about "119.93".
- return (((GET_MILLIS()) - timebase) * beats_per_minute_88 * 280) >> 16;
-}
-
-/// beat16 generates a 16-bit 'sawtooth' wave at a given BPM
-LIB8STATIC uint16_t beat16( accum88 beats_per_minute, uint32_t timebase)
-{
- // Convert simple 8-bit BPM's to full Q8.8 accum88's if needed
- if( beats_per_minute < 256) beats_per_minute <<= 8;
- return beat88(beats_per_minute, timebase);
-}
-
-/// beat8 generates an 8-bit 'sawtooth' wave at a given BPM
-LIB8STATIC uint8_t beat8( accum88 beats_per_minute, uint32_t timebase)
-{
- return beat16( beats_per_minute, timebase) >> 8;
-}
-
-/// beatsin88 generates a 16-bit sine wave at a given BPM,
-/// that oscillates within a given range.
-/// For this function, BPM MUST BE SPECIFIED as
-/// a Q8.8 fixed-point value; e.g. 120BPM must be
-/// specified as 120*256 = 30720.
-/// If you just want to specify "120", use beatsin16 or beatsin8.
-LIB8STATIC uint16_t beatsin88( accum88 beats_per_minute_88, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
-{
- uint16_t beat = beat88( beats_per_minute_88, timebase);
- uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
- uint16_t rangewidth = highest - lowest;
- uint16_t scaledbeat = scale16( beatsin, rangewidth);
- uint16_t result = lowest + scaledbeat;
- return result;
-}
-
-/// beatsin16 generates a 16-bit sine wave at a given BPM,
-/// that oscillates within a given range.
-LIB8STATIC uint16_t beatsin16(accum88 beats_per_minute, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
-{
- uint16_t beat = beat16( beats_per_minute, timebase);
- uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
- uint16_t rangewidth = highest - lowest;
- uint16_t scaledbeat = scale16( beatsin, rangewidth);
- uint16_t result = lowest + scaledbeat;
- return result;
-}
-
-/// beatsin8 generates an 8-bit sine wave at a given BPM,
-/// that oscillates within a given range.
-LIB8STATIC uint8_t beatsin8( accum88 beats_per_minute, uint8_t lowest, uint8_t highest, uint32_t timebase, uint8_t phase_offset)
-{
- uint8_t beat = beat8( beats_per_minute, timebase);
- uint8_t beatsin = sin8( beat + phase_offset);
- uint8_t rangewidth = highest - lowest;
- uint8_t scaledbeat = scale8( beatsin, rangewidth);
- uint8_t result = lowest + scaledbeat;
- return result;
-}
-
-
-/// Return the current seconds since boot in a 16-bit value. Used as part of the
-/// "every N time-periods" mechanism
-LIB8STATIC uint16_t seconds16(void)
-{
- uint32_t ms = GET_MILLIS();
- uint16_t s16;
- s16 = ms / 1000;
- return s16;
-}
-
-/// Return the current minutes since boot in a 16-bit value. Used as part of the
-/// "every N time-periods" mechanism
-LIB8STATIC uint16_t minutes16(void)
-{
- uint32_t ms = GET_MILLIS();
- uint16_t m16;
- m16 = (ms / (60000L)) & 0xFFFF;
- return m16;
-}
-
-/// Return the current hours since boot in an 8-bit value. Used as part of the
-/// "every N time-periods" mechanism
-LIB8STATIC uint8_t hours8(void)
-{
- uint32_t ms = GET_MILLIS();
- uint8_t h8;
- h8 = (ms / (3600000L)) & 0xFF;
- return h8;
-}
-
-///@}
-
-#endif