summaryrefslogtreecommitdiff
path: root/lib/lib8tion
diff options
context:
space:
mode:
Diffstat (limited to 'lib/lib8tion')
-rw-r--r--lib/lib8tion/LICENSE20
-rw-r--r--lib/lib8tion/lib8tion.c242
-rw-r--r--lib/lib8tion/lib8tion.h934
-rw-r--r--lib/lib8tion/math8.h552
-rw-r--r--lib/lib8tion/random8.h94
-rw-r--r--lib/lib8tion/scale8.h542
-rw-r--r--lib/lib8tion/trig8.h284
7 files changed, 0 insertions, 2668 deletions
diff --git a/lib/lib8tion/LICENSE b/lib/lib8tion/LICENSE
deleted file mode 100644
index ebe476330b..0000000000
--- a/lib/lib8tion/LICENSE
+++ /dev/null
@@ -1,20 +0,0 @@
-The MIT License (MIT)
-
-Copyright (c) 2013 FastLED
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of
-this software and associated documentation files (the "Software"), to deal in
-the Software without restriction, including without limitation the rights to
-use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
-the Software, and to permit persons to whom the Software is furnished to do so,
-subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
-FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
-COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
-IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
diff --git a/lib/lib8tion/lib8tion.c b/lib/lib8tion/lib8tion.c
deleted file mode 100644
index 84b3e9c61c..0000000000
--- a/lib/lib8tion/lib8tion.c
+++ /dev/null
@@ -1,242 +0,0 @@
-#define FASTLED_INTERNAL
-#include <stdint.h>
-
-#define RAND16_SEED 1337
-uint16_t rand16seed = RAND16_SEED;
-
-
-// memset8, memcpy8, memmove8:
-// optimized avr replacements for the standard "C" library
-// routines memset, memcpy, and memmove.
-//
-// There are two techniques that make these routines
-// faster than the standard avr-libc routines.
-// First, the loops are unrolled 2X, meaning that
-// the average loop overhead is cut in half.
-// And second, the compare-and-branch at the bottom
-// of each loop decrements the low byte of the
-// counter, and if the carry is clear, it branches
-// back up immediately. Only if the low byte math
-// causes carry do we bother to decrement the high
-// byte and check that result for carry as well.
-// Results for a 100-byte buffer are 20-40% faster
-// than standard avr-libc, at a cost of a few extra
-// bytes of code.
-
-#if defined(__AVR__)
-//__attribute__ ((noinline))
-void * memset8 ( void * ptr, uint8_t val, uint16_t num )
-{
- asm volatile(
- " movw r26, %[ptr] \n\t"
- " sbrs %A[num], 0 \n\t"
- " rjmp Lseteven_%= \n\t"
- " rjmp Lsetodd_%= \n\t"
- "Lsetloop_%=: \n\t"
- " st X+, %[val] \n\t"
- "Lsetodd_%=: \n\t"
- " st X+, %[val] \n\t"
- "Lseteven_%=: \n\t"
- " subi %A[num], 2 \n\t"
- " brcc Lsetloop_%= \n\t"
- " sbci %B[num], 0 \n\t"
- " brcc Lsetloop_%= \n\t"
- : [num] "+r" (num)
- : [ptr] "r" (ptr),
- [val] "r" (val)
- : "memory"
- );
- return ptr;
-}
-
-
-
-//__attribute__ ((noinline))
-void * memcpy8 ( void * dst, const void* src, uint16_t num )
-{
- asm volatile(
- " movw r30, %[src] \n\t"
- " movw r26, %[dst] \n\t"
- " sbrs %A[num], 0 \n\t"
- " rjmp Lcpyeven_%= \n\t"
- " rjmp Lcpyodd_%= \n\t"
- "Lcpyloop_%=: \n\t"
- " ld __tmp_reg__, Z+ \n\t"
- " st X+, __tmp_reg__ \n\t"
- "Lcpyodd_%=: \n\t"
- " ld __tmp_reg__, Z+ \n\t"
- " st X+, __tmp_reg__ \n\t"
- "Lcpyeven_%=: \n\t"
- " subi %A[num], 2 \n\t"
- " brcc Lcpyloop_%= \n\t"
- " sbci %B[num], 0 \n\t"
- " brcc Lcpyloop_%= \n\t"
- : [num] "+r" (num)
- : [src] "r" (src),
- [dst] "r" (dst)
- : "memory"
- );
- return dst;
-}
-
-//__attribute__ ((noinline))
-void * memmove8 ( void * dst, const void* src, uint16_t num )
-{
- if( src > dst) {
- // if src > dst then we can use the forward-stepping memcpy8
- return memcpy8( dst, src, num);
- } else {
- // if src < dst then we have to step backward:
- dst = (char*)dst + num;
- src = (char*)src + num;
- asm volatile(
- " movw r30, %[src] \n\t"
- " movw r26, %[dst] \n\t"
- " sbrs %A[num], 0 \n\t"
- " rjmp Lmoveven_%= \n\t"
- " rjmp Lmovodd_%= \n\t"
- "Lmovloop_%=: \n\t"
- " ld __tmp_reg__, -Z \n\t"
- " st -X, __tmp_reg__ \n\t"
- "Lmovodd_%=: \n\t"
- " ld __tmp_reg__, -Z \n\t"
- " st -X, __tmp_reg__ \n\t"
- "Lmoveven_%=: \n\t"
- " subi %A[num], 2 \n\t"
- " brcc Lmovloop_%= \n\t"
- " sbci %B[num], 0 \n\t"
- " brcc Lmovloop_%= \n\t"
- : [num] "+r" (num)
- : [src] "r" (src),
- [dst] "r" (dst)
- : "memory"
- );
- return dst;
- }
-}
-
-#endif /* AVR */
-
-
-
-
-#if 0
-// TEST / VERIFICATION CODE ONLY BELOW THIS POINT
-#include <Arduino.h>
-#include "lib8tion.h"
-
-void test1abs( int8_t i)
-{
- Serial.print("abs("); Serial.print(i); Serial.print(") = ");
- int8_t j = abs8(i);
- Serial.print(j); Serial.println(" ");
-}
-
-void testabs()
-{
- delay(5000);
- for( int8_t q = -128; q != 127; q++) {
- test1abs(q);
- }
- for(;;){};
-}
-
-
-void testmul8()
-{
- delay(5000);
- byte r, c;
-
- Serial.println("mul8:");
- for( r = 0; r <= 20; r += 1) {
- Serial.print(r); Serial.print(" : ");
- for( c = 0; c <= 20; c += 1) {
- byte t;
- t = mul8( r, c);
- Serial.print(t); Serial.print(' ');
- }
- Serial.println(' ');
- }
- Serial.println("done.");
- for(;;){};
-}
-
-
-void testscale8()
-{
- delay(5000);
- byte r, c;
-
- Serial.println("scale8:");
- for( r = 0; r <= 240; r += 10) {
- Serial.print(r); Serial.print(" : ");
- for( c = 0; c <= 240; c += 10) {
- byte t;
- t = scale8( r, c);
- Serial.print(t); Serial.print(' ');
- }
- Serial.println(' ');
- }
-
- Serial.println(' ');
- Serial.println("scale8_video:");
-
- for( r = 0; r <= 100; r += 4) {
- Serial.print(r); Serial.print(" : ");
- for( c = 0; c <= 100; c += 4) {
- byte t;
- t = scale8_video( r, c);
- Serial.print(t); Serial.print(' ');
- }
- Serial.println(' ');
- }
-
- Serial.println("done.");
- for(;;){};
-}
-
-
-
-void testqadd8()
-{
- delay(5000);
- byte r, c;
- for( r = 0; r <= 240; r += 10) {
- Serial.print(r); Serial.print(" : ");
- for( c = 0; c <= 240; c += 10) {
- byte t;
- t = qadd8( r, c);
- Serial.print(t); Serial.print(' ');
- }
- Serial.println(' ');
- }
- Serial.println("done.");
- for(;;){};
-}
-
-void testnscale8x3()
-{
- delay(5000);
- byte r, g, b, sc;
- for( byte z = 0; z < 10; z++) {
- r = random8(); g = random8(); b = random8(); sc = random8();
-
- Serial.print("nscale8x3_video( ");
- Serial.print(r); Serial.print(", ");
- Serial.print(g); Serial.print(", ");
- Serial.print(b); Serial.print(", ");
- Serial.print(sc); Serial.print(") = [ ");
-
- nscale8x3_video( r, g, b, sc);
-
- Serial.print(r); Serial.print(", ");
- Serial.print(g); Serial.print(", ");
- Serial.print(b); Serial.print("]");
-
- Serial.println(' ');
- }
- Serial.println("done.");
- for(;;){};
-}
-
-#endif
diff --git a/lib/lib8tion/lib8tion.h b/lib/lib8tion/lib8tion.h
deleted file mode 100644
index 4c770cbcb5..0000000000
--- a/lib/lib8tion/lib8tion.h
+++ /dev/null
@@ -1,934 +0,0 @@
-#ifndef __INC_LIB8TION_H
-#define __INC_LIB8TION_H
-
-/*
-
- Fast, efficient 8-bit math functions specifically
- designed for high-performance LED programming.
-
- Because of the AVR(Arduino) and ARM assembly language
- implementations provided, using these functions often
- results in smaller and faster code than the equivalent
- program using plain "C" arithmetic and logic.
-
-
- Included are:
-
-
- - Saturating unsigned 8-bit add and subtract.
- Instead of wrapping around if an overflow occurs,
- these routines just 'clamp' the output at a maxumum
- of 255, or a minimum of 0. Useful for adding pixel
- values. E.g., qadd8( 200, 100) = 255.
-
- qadd8( i, j) == MIN( (i + j), 0xFF )
- qsub8( i, j) == MAX( (i - j), 0 )
-
- - Saturating signed 8-bit ("7-bit") add.
- qadd7( i, j) == MIN( (i + j), 0x7F)
-
-
- - Scaling (down) of unsigned 8- and 16- bit values.
- Scaledown value is specified in 1/256ths.
- scale8( i, sc) == (i * sc) / 256
- scale16by8( i, sc) == (i * sc) / 256
-
- Example: scaling a 0-255 value down into a
- range from 0-99:
- downscaled = scale8( originalnumber, 100);
-
- A special version of scale8 is provided for scaling
- LED brightness values, to make sure that they don't
- accidentally scale down to total black at low
- dimming levels, since that would look wrong:
- scale8_video( i, sc) = ((i * sc) / 256) +? 1
-
- Example: reducing an LED brightness by a
- dimming factor:
- new_bright = scale8_video( orig_bright, dimming);
-
-
- - Fast 8- and 16- bit unsigned random numbers.
- Significantly faster than Arduino random(), but
- also somewhat less random. You can add entropy.
- random8() == random from 0..255
- random8( n) == random from 0..(N-1)
- random8( n, m) == random from N..(M-1)
-
- random16() == random from 0..65535
- random16( n) == random from 0..(N-1)
- random16( n, m) == random from N..(M-1)
-
- random16_set_seed( k) == seed = k
- random16_add_entropy( k) == seed += k
-
-
- - Absolute value of a signed 8-bit value.
- abs8( i) == abs( i)
-
-
- - 8-bit math operations which return 8-bit values.
- These are provided mostly for completeness,
- not particularly for performance.
- mul8( i, j) == (i * j) & 0xFF
- add8( i, j) == (i + j) & 0xFF
- sub8( i, j) == (i - j) & 0xFF
-
-
- - Fast 16-bit approximations of sin and cos.
- Input angle is a uint16_t from 0-65535.
- Output is a signed int16_t from -32767 to 32767.
- sin16( x) == sin( (x/32768.0) * pi) * 32767
- cos16( x) == cos( (x/32768.0) * pi) * 32767
- Accurate to more than 99% in all cases.
-
- - Fast 8-bit approximations of sin and cos.
- Input angle is a uint8_t from 0-255.
- Output is an UNsigned uint8_t from 0 to 255.
- sin8( x) == (sin( (x/128.0) * pi) * 128) + 128
- cos8( x) == (cos( (x/128.0) * pi) * 128) + 128
- Accurate to within about 2%.
-
-
- - Fast 8-bit "easing in/out" function.
- ease8InOutCubic(x) == 3(x^i) - 2(x^3)
- ease8InOutApprox(x) ==
- faster, rougher, approximation of cubic easing
- ease8InOutQuad(x) == quadratic (vs cubic) easing
-
- - Cubic, Quadratic, and Triangle wave functions.
- Input is a uint8_t representing phase withing the wave,
- similar to how sin8 takes an angle 'theta'.
- Output is a uint8_t representing the amplitude of
- the wave at that point.
- cubicwave8( x)
- quadwave8( x)
- triwave8( x)
-
- - Square root for 16-bit integers. About three times
- faster and five times smaller than Arduino's built-in
- generic 32-bit sqrt routine.
- sqrt16( uint16_t x ) == sqrt( x)
-
- - Dimming and brightening functions for 8-bit
- light values.
- dim8_video( x) == scale8_video( x, x)
- dim8_raw( x) == scale8( x, x)
- dim8_lin( x) == (x<128) ? ((x+1)/2) : scale8(x,x)
- brighten8_video( x) == 255 - dim8_video( 255 - x)
- brighten8_raw( x) == 255 - dim8_raw( 255 - x)
- brighten8_lin( x) == 255 - dim8_lin( 255 - x)
- The dimming functions in particular are suitable
- for making LED light output appear more 'linear'.
-
-
- - Linear interpolation between two values, with the
- fraction between them expressed as an 8- or 16-bit
- fixed point fraction (fract8 or fract16).
- lerp8by8( fromU8, toU8, fract8 )
- lerp16by8( fromU16, toU16, fract8 )
- lerp15by8( fromS16, toS16, fract8 )
- == from + (( to - from ) * fract8) / 256)
- lerp16by16( fromU16, toU16, fract16 )
- == from + (( to - from ) * fract16) / 65536)
- map8( in, rangeStart, rangeEnd)
- == map( in, 0, 255, rangeStart, rangeEnd);
-
- - Optimized memmove, memcpy, and memset, that are
- faster than standard avr-libc 1.8.
- memmove8( dest, src, bytecount)
- memcpy8( dest, src, bytecount)
- memset8( buf, value, bytecount)
-
- - Beat generators which return sine or sawtooth
- waves in a specified number of Beats Per Minute.
- Sine wave beat generators can specify a low and
- high range for the output. Sawtooth wave beat
- generators always range 0-255 or 0-65535.
- beatsin8( BPM, low8, high8)
- = (sine(beatphase) * (high8-low8)) + low8
- beatsin16( BPM, low16, high16)
- = (sine(beatphase) * (high16-low16)) + low16
- beatsin88( BPM88, low16, high16)
- = (sine(beatphase) * (high16-low16)) + low16
- beat8( BPM) = 8-bit repeating sawtooth wave
- beat16( BPM) = 16-bit repeating sawtooth wave
- beat88( BPM88) = 16-bit repeating sawtooth wave
- BPM is beats per minute in either simple form
- e.g. 120, or Q8.8 fixed-point form.
- BPM88 is beats per minute in ONLY Q8.8 fixed-point
- form.
-
-Lib8tion is pronounced like 'libation': lie-BAY-shun
-
-*/
-
-
-
-#include <stdint.h>
-
-#define LIB8STATIC static inline
-#define LIB8STATIC_ALWAYS_INLINE static inline
-
-#if !defined(__AVR__)
-#include <string.h>
-// for memmove, memcpy, and memset if not defined here
-#endif
-
-#if defined(__arm__)
-
-#if defined(FASTLED_TEENSY3)
-// Can use Cortex M4 DSP instructions
-#define QADD8_C 0
-#define QADD7_C 0
-#define QADD8_ARM_DSP_ASM 1
-#define QADD7_ARM_DSP_ASM 1
-#else
-// Generic ARM
-#define QADD8_C 1
-#define QADD7_C 1
-#endif
-
-#define QSUB8_C 1
-#define SCALE8_C 1
-#define SCALE16BY8_C 1
-#define SCALE16_C 1
-#define ABS8_C 1
-#define MUL8_C 1
-#define QMUL8_C 1
-#define ADD8_C 1
-#define SUB8_C 1
-#define EASE8_C 1
-#define AVG8_C 1
-#define AVG7_C 1
-#define AVG16_C 1
-#define AVG15_C 1
-#define BLEND8_C 1
-
-
-#elif defined(__AVR__)
-
-// AVR ATmega and friends Arduino
-
-#define QADD8_C 0
-#define QADD7_C 0
-#define QSUB8_C 0
-#define ABS8_C 0
-#define ADD8_C 0
-#define SUB8_C 0
-#define AVG8_C 0
-#define AVG7_C 0
-#define AVG16_C 0
-#define AVG15_C 0
-
-#define QADD8_AVRASM 1
-#define QADD7_AVRASM 1
-#define QSUB8_AVRASM 1
-#define ABS8_AVRASM 1
-#define ADD8_AVRASM 1
-#define SUB8_AVRASM 1
-#define AVG8_AVRASM 1
-#define AVG7_AVRASM 1
-#define AVG16_AVRASM 1
-#define AVG15_AVRASM 1
-
-// Note: these require hardware MUL instruction
-// -- sorry, ATtiny!
-#if !defined(LIB8_ATTINY)
-#define SCALE8_C 0
-#define SCALE16BY8_C 0
-#define SCALE16_C 0
-#define MUL8_C 0
-#define QMUL8_C 0
-#define EASE8_C 0
-#define BLEND8_C 0
-#define SCALE8_AVRASM 1
-#define SCALE16BY8_AVRASM 1
-#define SCALE16_AVRASM 1
-#define MUL8_AVRASM 1
-#define QMUL8_AVRASM 1
-#define EASE8_AVRASM 1
-#define CLEANUP_R1_AVRASM 1
-#define BLEND8_AVRASM 1
-#else
-// On ATtiny, we just use C implementations
-#define SCALE8_C 1
-#define SCALE16BY8_C 1
-#define SCALE16_C 1
-#define MUL8_C 1
-#define QMUL8_C 1
-#define EASE8_C 1
-#define BLEND8_C 1
-#define SCALE8_AVRASM 0
-#define SCALE16BY8_AVRASM 0
-#define SCALE16_AVRASM 0
-#define MUL8_AVRASM 0
-#define QMUL8_AVRASM 0
-#define EASE8_AVRASM 0
-#define BLEND8_AVRASM 0
-#endif
-
-#else
-
-// unspecified architecture, so
-// no ASM, everything in C
-#define QADD8_C 1
-#define QADD7_C 1
-#define QSUB8_C 1
-#define SCALE8_C 1
-#define SCALE16BY8_C 1
-#define SCALE16_C 1
-#define ABS8_C 1
-#define MUL8_C 1
-#define QMUL8_C 1
-#define ADD8_C 1
-#define SUB8_C 1
-#define EASE8_C 1
-#define AVG8_C 1
-#define AVG7_C 1
-#define AVG16_C 1
-#define AVG15_C 1
-#define BLEND8_C 1
-
-#endif
-
-///@defgroup lib8tion Fast math functions
-///A variety of functions for working with numbers.
-///@{
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// typdefs for fixed-point fractional types.
-//
-// sfract7 should be interpreted as signed 128ths.
-// fract8 should be interpreted as unsigned 256ths.
-// sfract15 should be interpreted as signed 32768ths.
-// fract16 should be interpreted as unsigned 65536ths.
-//
-// Example: if a fract8 has the value "64", that should be interpreted
-// as 64/256ths, or one-quarter.
-//
-//
-// fract8 range is 0 to 0.99609375
-// in steps of 0.00390625
-//
-// sfract7 range is -0.9921875 to 0.9921875
-// in steps of 0.0078125
-//
-// fract16 range is 0 to 0.99998474121
-// in steps of 0.00001525878
-//
-// sfract15 range is -0.99996948242 to 0.99996948242
-// in steps of 0.00003051757
-//
-
-/// ANSI unsigned short _Fract. range is 0 to 0.99609375
-/// in steps of 0.00390625
-typedef uint8_t fract8; ///< ANSI: unsigned short _Fract
-
-/// ANSI: signed short _Fract. range is -0.9921875 to 0.9921875
-/// in steps of 0.0078125
-typedef int8_t sfract7; ///< ANSI: signed short _Fract
-
-/// ANSI: unsigned _Fract. range is 0 to 0.99998474121
-/// in steps of 0.00001525878
-typedef uint16_t fract16; ///< ANSI: unsigned _Fract
-
-/// ANSI: signed _Fract. range is -0.99996948242 to 0.99996948242
-/// in steps of 0.00003051757
-typedef int16_t sfract15; ///< ANSI: signed _Fract
-
-
-// accumXY types should be interpreted as X bits of integer,
-// and Y bits of fraction.
-// E.g., accum88 has 8 bits of int, 8 bits of fraction
-
-typedef uint16_t accum88; ///< ANSI: unsigned short _Accum. 8 bits int, 8 bits fraction
-typedef int16_t saccum78; ///< ANSI: signed short _Accum. 7 bits int, 8 bits fraction
-typedef uint32_t accum1616;///< ANSI: signed _Accum. 16 bits int, 16 bits fraction
-typedef int32_t saccum1516;///< ANSI: signed _Accum. 15 bits int, 16 bits fraction
-typedef uint16_t accum124; ///< no direct ANSI counterpart. 12 bits int, 4 bits fraction
-typedef int32_t saccum114;///< no direct ANSI counterpart. 1 bit int, 14 bits fraction
-
-
-
-#include "math8.h"
-#include "scale8.h"
-#include "random8.h"
-#include "trig8.h"
-
-///////////////////////////////////////////////////////////////////////
-
-
-
-
-
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// float-to-fixed and fixed-to-float conversions
-//
-// Note that anything involving a 'float' on AVR will be slower.
-
-/// sfract15ToFloat: conversion from sfract15 fixed point to
-/// IEEE754 32-bit float.
-LIB8STATIC float sfract15ToFloat( sfract15 y)
-{
- return y / 32768.0;
-}
-
-/// conversion from IEEE754 float in the range (-1,1)
-/// to 16-bit fixed point. Note that the extremes of
-/// one and negative one are NOT representable. The
-/// representable range is basically
-LIB8STATIC sfract15 floatToSfract15( float f)
-{
- return f * 32768.0;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// memmove8, memcpy8, and memset8:
-// alternatives to memmove, memcpy, and memset that are
-// faster on AVR than standard avr-libc 1.8
-
-#if defined(__AVR__)
-void * memmove8( void * dst, const void * src, uint16_t num );
-void * memcpy8 ( void * dst, const void * src, uint16_t num ) __attribute__ ((noinline));
-void * memset8 ( void * ptr, uint8_t value, uint16_t num ) __attribute__ ((noinline)) ;
-#else
-// on non-AVR platforms, these names just call standard libc.
-#define memmove8 memmove
-#define memcpy8 memcpy
-#define memset8 memset
-#endif
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// linear interpolation, such as could be used for Perlin noise, etc.
-//
-
-// A note on the structure of the lerp functions:
-// The cases for b>a and b<=a are handled separately for
-// speed: without knowing the relative order of a and b,
-// the value (a-b) might be overflow the width of a or b,
-// and have to be promoted to a wider, slower type.
-// To avoid that, we separate the two cases, and are able
-// to do all the math in the same width as the arguments,
-// which is much faster and smaller on AVR.
-
-/// linear interpolation between two unsigned 8-bit values,
-/// with 8-bit fraction
-LIB8STATIC uint8_t lerp8by8( uint8_t a, uint8_t b, fract8 frac)
-{
- uint8_t result;
- if( b > a) {
- uint8_t delta = b - a;
- uint8_t scaled = scale8( delta, frac);
- result = a + scaled;
- } else {
- uint8_t delta = a - b;
- uint8_t scaled = scale8( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// linear interpolation between two unsigned 16-bit values,
-/// with 16-bit fraction
-LIB8STATIC uint16_t lerp16by16( uint16_t a, uint16_t b, fract16 frac)
-{
- uint16_t result;
- if( b > a ) {
- uint16_t delta = b - a;
- uint16_t scaled = scale16(delta, frac);
- result = a + scaled;
- } else {
- uint16_t delta = a - b;
- uint16_t scaled = scale16( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// linear interpolation between two unsigned 16-bit values,
-/// with 8-bit fraction
-LIB8STATIC uint16_t lerp16by8( uint16_t a, uint16_t b, fract8 frac)
-{
- uint16_t result;
- if( b > a) {
- uint16_t delta = b - a;
- uint16_t scaled = scale16by8( delta, frac);
- result = a + scaled;
- } else {
- uint16_t delta = a - b;
- uint16_t scaled = scale16by8( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// linear interpolation between two signed 15-bit values,
-/// with 8-bit fraction
-LIB8STATIC int16_t lerp15by8( int16_t a, int16_t b, fract8 frac)
-{
- int16_t result;
- if( b > a) {
- uint16_t delta = b - a;
- uint16_t scaled = scale16by8( delta, frac);
- result = a + scaled;
- } else {
- uint16_t delta = a - b;
- uint16_t scaled = scale16by8( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// linear interpolation between two signed 15-bit values,
-/// with 8-bit fraction
-LIB8STATIC int16_t lerp15by16( int16_t a, int16_t b, fract16 frac)
-{
- int16_t result;
- if( b > a) {
- uint16_t delta = b - a;
- uint16_t scaled = scale16( delta, frac);
- result = a + scaled;
- } else {
- uint16_t delta = a - b;
- uint16_t scaled = scale16( delta, frac);
- result = a - scaled;
- }
- return result;
-}
-
-/// map8: map from one full-range 8-bit value into a narrower
-/// range of 8-bit values, possibly a range of hues.
-///
-/// E.g. map myValue into a hue in the range blue..purple..pink..red
-/// hue = map8( myValue, HUE_BLUE, HUE_RED);
-///
-/// Combines nicely with the waveform functions (like sin8, etc)
-/// to produce continuous hue gradients back and forth:
-///
-/// hue = map8( sin8( myValue), HUE_BLUE, HUE_RED);
-///
-/// Mathematically simiar to lerp8by8, but arguments are more
-/// like Arduino's "map"; this function is similar to
-///
-/// map( in, 0, 255, rangeStart, rangeEnd)
-///
-/// but faster and specifically designed for 8-bit values.
-LIB8STATIC uint8_t map8( uint8_t in, uint8_t rangeStart, uint8_t rangeEnd)
-{
- uint8_t rangeWidth = rangeEnd - rangeStart;
- uint8_t out = scale8( in, rangeWidth);
- out += rangeStart;
- return out;
-}
-
-
-///////////////////////////////////////////////////////////////////////
-//
-// easing functions; see http://easings.net
-//
-
-/// ease8InOutQuad: 8-bit quadratic ease-in / ease-out function
-/// Takes around 13 cycles on AVR
-#if EASE8_C == 1
-LIB8STATIC uint8_t ease8InOutQuad( uint8_t i)
-{
- uint8_t j = i;
- if( j & 0x80 ) {
- j = 255 - j;
- }
- uint8_t jj = scale8( j, j);
- uint8_t jj2 = jj << 1;
- if( i & 0x80 ) {
- jj2 = 255 - jj2;
- }
- return jj2;
-}
-
-#elif EASE8_AVRASM == 1
-// This AVR asm version of ease8InOutQuad preserves one more
-// low-bit of precision than the C version, and is also slightly
-// smaller and faster.
-LIB8STATIC uint8_t ease8InOutQuad(uint8_t val) {
- uint8_t j=val;
- asm volatile (
- "sbrc %[val], 7 \n"
- "com %[j] \n"
- "mul %[j], %[j] \n"
- "add r0, %[j] \n"
- "ldi %[j], 0 \n"
- "adc %[j], r1 \n"
- "lsl r0 \n" // carry = high bit of low byte of mul product
- "rol %[j] \n" // j = (j * 2) + carry // preserve add'l bit of precision
- "sbrc %[val], 7 \n"
- "com %[j] \n"
- "clr __zero_reg__ \n"
- : [j] "+&a" (j)
- : [val] "a" (val)
- : "r0", "r1"
- );
- return j;
-}
-
-#else
-#error "No implementation for ease8InOutQuad available."
-#endif
-
-/// ease16InOutQuad: 16-bit quadratic ease-in / ease-out function
-// C implementation at this point
-LIB8STATIC uint16_t ease16InOutQuad( uint16_t i)
-{
- uint16_t j = i;
- if( j & 0x8000 ) {
- j = 65535 - j;
- }
- uint16_t jj = scale16( j, j);
- uint16_t jj2 = jj << 1;
- if( i & 0x8000 ) {
- jj2 = 65535 - jj2;
- }
- return jj2;
-}
-
-
-/// ease8InOutCubic: 8-bit cubic ease-in / ease-out function
-/// Takes around 18 cycles on AVR
-LIB8STATIC fract8 ease8InOutCubic( fract8 i)
-{
- uint8_t ii = scale8_LEAVING_R1_DIRTY( i, i);
- uint8_t iii = scale8_LEAVING_R1_DIRTY( ii, i);
-
- uint16_t r1 = (3 * (uint16_t)(ii)) - ( 2 * (uint16_t)(iii));
-
- /* the code generated for the above *'s automatically
- cleans up R1, so there's no need to explicitily call
- cleanup_R1(); */
-
- uint8_t result = r1;
-
- // if we got "256", return 255:
- if( r1 & 0x100 ) {
- result = 255;
- }
- return result;
-}
-
-/// ease8InOutApprox: fast, rough 8-bit ease-in/ease-out function
-/// shaped approximately like 'ease8InOutCubic',
-/// it's never off by more than a couple of percent
-/// from the actual cubic S-curve, and it executes
-/// more than twice as fast. Use when the cycles
-/// are more important than visual smoothness.
-/// Asm version takes around 7 cycles on AVR.
-
-#if EASE8_C == 1
-LIB8STATIC fract8 ease8InOutApprox( fract8 i)
-{
- if( i < 64) {
- // start with slope 0.5
- i /= 2;
- } else if( i > (255 - 64)) {
- // end with slope 0.5
- i = 255 - i;
- i /= 2;
- i = 255 - i;
- } else {
- // in the middle, use slope 192/128 = 1.5
- i -= 64;
- i += (i / 2);
- i += 32;
- }
-
- return i;
-}
-
-#elif EASE8_AVRASM == 1
-LIB8STATIC uint8_t ease8InOutApprox( fract8 i)
-{
- // takes around 7 cycles on AVR
- asm volatile (
- " subi %[i], 64 \n\t"
- " cpi %[i], 128 \n\t"
- " brcc Lshift_%= \n\t"
-
- // middle case
- " mov __tmp_reg__, %[i] \n\t"
- " lsr __tmp_reg__ \n\t"
- " add %[i], __tmp_reg__ \n\t"
- " subi %[i], 224 \n\t"
- " rjmp Ldone_%= \n\t"
-
- // start or end case
- "Lshift_%=: \n\t"
- " lsr %[i] \n\t"
- " subi %[i], 96 \n\t"
-
- "Ldone_%=: \n\t"
-
- : [i] "+&a" (i)
- :
- : "r0", "r1"
- );
- return i;
-}
-#else
-#error "No implementation for ease8 available."
-#endif
-
-
-
-/// triwave8: triangle (sawtooth) wave generator. Useful for
-/// turning a one-byte ever-increasing value into a
-/// one-byte value that oscillates up and down.
-///
-/// input output
-/// 0..127 0..254 (positive slope)
-/// 128..255 254..0 (negative slope)
-///
-/// On AVR this function takes just three cycles.
-///
-LIB8STATIC uint8_t triwave8(uint8_t in)
-{
- if( in & 0x80) {
- in = 255 - in;
- }
- uint8_t out = in << 1;
- return out;
-}
-
-
-// quadwave8 and cubicwave8: S-shaped wave generators (like 'sine').
-// Useful for turning a one-byte 'counter' value into a
-// one-byte oscillating value that moves smoothly up and down,
-// with an 'acceleration' and 'deceleration' curve.
-//
-// These are even faster than 'sin8', and have
-// slightly different curve shapes.
-//
-
-/// quadwave8: quadratic waveform generator. Spends just a little more
-/// time at the limits than 'sine' does.
-LIB8STATIC uint8_t quadwave8(uint8_t in)
-{
- return ease8InOutQuad( triwave8( in));
-}
-
-/// cubicwave8: cubic waveform generator. Spends visibly more time
-/// at the limits than 'sine' does.
-LIB8STATIC uint8_t cubicwave8(uint8_t in)
-{
- return ease8InOutCubic( triwave8( in));
-}
-
-/// squarewave8: square wave generator. Useful for
-/// turning a one-byte ever-increasing value
-/// into a one-byte value that is either 0 or 255.
-/// The width of the output 'pulse' is
-/// determined by the pulsewidth argument:
-///
-///~~~
-/// If pulsewidth is 255, output is always 255.
-/// If pulsewidth < 255, then
-/// if input < pulsewidth then output is 255
-/// if input >= pulsewidth then output is 0
-///~~~
-///
-/// the output looking like:
-///
-///~~~
-/// 255 +--pulsewidth--+
-/// . | |
-/// 0 0 +--------(256-pulsewidth)--------
-///~~~
-///
-/// @param in
-/// @param pulsewidth
-/// @returns square wave output
-LIB8STATIC uint8_t squarewave8( uint8_t in, uint8_t pulsewidth)
-{
- if( in < pulsewidth || (pulsewidth == 255)) {
- return 255;
- } else {
- return 0;
- }
-}
-
-
-// Beat generators - These functions produce waves at a given
-// number of 'beats per minute'. Internally, they use
-// the Arduino function 'millis' to track elapsed time.
-// Accuracy is a bit better than one part in a thousand.
-//
-// beat8( BPM ) returns an 8-bit value that cycles 'BPM' times
-// per minute, rising from 0 to 255, resetting to zero,
-// rising up again, etc.. The output of this function
-// is suitable for feeding directly into sin8, and cos8,
-// triwave8, quadwave8, and cubicwave8.
-// beat16( BPM ) returns a 16-bit value that cycles 'BPM' times
-// per minute, rising from 0 to 65535, resetting to zero,
-// rising up again, etc. The output of this function is
-// suitable for feeding directly into sin16 and cos16.
-// beat88( BPM88) is the same as beat16, except that the BPM88 argument
-// MUST be in Q8.8 fixed point format, e.g. 120BPM must
-// be specified as 120*256 = 30720.
-// beatsin8( BPM, uint8_t low, uint8_t high) returns an 8-bit value that
-// rises and falls in a sine wave, 'BPM' times per minute,
-// between the values of 'low' and 'high'.
-// beatsin16( BPM, uint16_t low, uint16_t high) returns a 16-bit value
-// that rises and falls in a sine wave, 'BPM' times per
-// minute, between the values of 'low' and 'high'.
-// beatsin88( BPM88, ...) is the same as beatsin16, except that the
-// BPM88 argument MUST be in Q8.8 fixed point format,
-// e.g. 120BPM must be specified as 120*256 = 30720.
-//
-// BPM can be supplied two ways. The simpler way of specifying BPM is as
-// a simple 8-bit integer from 1-255, (e.g., "120").
-// The more sophisticated way of specifying BPM allows for fractional
-// "Q8.8" fixed point number (an 'accum88') with an 8-bit integer part and
-// an 8-bit fractional part. The easiest way to construct this is to multiply
-// a floating point BPM value (e.g. 120.3) by 256, (e.g. resulting in 30796
-// in this case), and pass that as the 16-bit BPM argument.
-// "BPM88" MUST always be specified in Q8.8 format.
-//
-// Originally designed to make an entire animation project pulse with brightness.
-// For that effect, add this line just above your existing call to "FastLED.show()":
-//
-// uint8_t bright = beatsin8( 60 /*BPM*/, 192 /*dimmest*/, 255 /*brightest*/ ));
-// FastLED.setBrightness( bright );
-// FastLED.show();
-//
-// The entire animation will now pulse between brightness 192 and 255 once per second.
-
-
-// The beat generators need access to a millisecond counter.
-// On Arduino, this is "millis()". On other platforms, you'll
-// need to provide a function with this signature:
-// uint32_t get_millisecond_timer();
-// that provides similar functionality.
-// You can also force use of the get_millisecond_timer function
-// by #defining USE_GET_MILLISECOND_TIMER.
-#if (defined(ARDUINO) || defined(SPARK) || defined(FASTLED_HAS_MILLIS)) && !defined(USE_GET_MILLISECOND_TIMER)
-// Forward declaration of Arduino function 'millis'.
-//uint32_t millis();
-#define GET_MILLIS millis
-#else
-uint32_t get_millisecond_timer(void);
-#define GET_MILLIS get_millisecond_timer
-#endif
-
-// beat16 generates a 16-bit 'sawtooth' wave at a given BPM,
-/// with BPM specified in Q8.8 fixed-point format; e.g.
-/// for this function, 120 BPM MUST BE specified as
-/// 120*256 = 30720.
-/// If you just want to specify "120", use beat16 or beat8.
-LIB8STATIC uint16_t beat88( accum88 beats_per_minute_88, uint32_t timebase)
-{
- // BPM is 'beats per minute', or 'beats per 60000ms'.
- // To avoid using the (slower) division operator, we
- // want to convert 'beats per 60000ms' to 'beats per 65536ms',
- // and then use a simple, fast bit-shift to divide by 65536.
- //
- // The ratio 65536:60000 is 279.620266667:256; we'll call it 280:256.
- // The conversion is accurate to about 0.05%, more or less,
- // e.g. if you ask for "120 BPM", you'll get about "119.93".
- return (((GET_MILLIS()) - timebase) * beats_per_minute_88 * 280) >> 16;
-}
-
-/// beat16 generates a 16-bit 'sawtooth' wave at a given BPM
-LIB8STATIC uint16_t beat16( accum88 beats_per_minute, uint32_t timebase)
-{
- // Convert simple 8-bit BPM's to full Q8.8 accum88's if needed
- if( beats_per_minute < 256) beats_per_minute <<= 8;
- return beat88(beats_per_minute, timebase);
-}
-
-/// beat8 generates an 8-bit 'sawtooth' wave at a given BPM
-LIB8STATIC uint8_t beat8( accum88 beats_per_minute, uint32_t timebase)
-{
- return beat16( beats_per_minute, timebase) >> 8;
-}
-
-/// beatsin88 generates a 16-bit sine wave at a given BPM,
-/// that oscillates within a given range.
-/// For this function, BPM MUST BE SPECIFIED as
-/// a Q8.8 fixed-point value; e.g. 120BPM must be
-/// specified as 120*256 = 30720.
-/// If you just want to specify "120", use beatsin16 or beatsin8.
-LIB8STATIC uint16_t beatsin88( accum88 beats_per_minute_88, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
-{
- uint16_t beat = beat88( beats_per_minute_88, timebase);
- uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
- uint16_t rangewidth = highest - lowest;
- uint16_t scaledbeat = scale16( beatsin, rangewidth);
- uint16_t result = lowest + scaledbeat;
- return result;
-}
-
-/// beatsin16 generates a 16-bit sine wave at a given BPM,
-/// that oscillates within a given range.
-LIB8STATIC uint16_t beatsin16(accum88 beats_per_minute, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
-{
- uint16_t beat = beat16( beats_per_minute, timebase);
- uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
- uint16_t rangewidth = highest - lowest;
- uint16_t scaledbeat = scale16( beatsin, rangewidth);
- uint16_t result = lowest + scaledbeat;
- return result;
-}
-
-/// beatsin8 generates an 8-bit sine wave at a given BPM,
-/// that oscillates within a given range.
-LIB8STATIC uint8_t beatsin8( accum88 beats_per_minute, uint8_t lowest, uint8_t highest, uint32_t timebase, uint8_t phase_offset)
-{
- uint8_t beat = beat8( beats_per_minute, timebase);
- uint8_t beatsin = sin8( beat + phase_offset);
- uint8_t rangewidth = highest - lowest;
- uint8_t scaledbeat = scale8( beatsin, rangewidth);
- uint8_t result = lowest + scaledbeat;
- return result;
-}
-
-
-/// Return the current seconds since boot in a 16-bit value. Used as part of the
-/// "every N time-periods" mechanism
-LIB8STATIC uint16_t seconds16(void)
-{
- uint32_t ms = GET_MILLIS();
- uint16_t s16;
- s16 = ms / 1000;
- return s16;
-}
-
-/// Return the current minutes since boot in a 16-bit value. Used as part of the
-/// "every N time-periods" mechanism
-LIB8STATIC uint16_t minutes16(void)
-{
- uint32_t ms = GET_MILLIS();
- uint16_t m16;
- m16 = (ms / (60000L)) & 0xFFFF;
- return m16;
-}
-
-/// Return the current hours since boot in an 8-bit value. Used as part of the
-/// "every N time-periods" mechanism
-LIB8STATIC uint8_t hours8(void)
-{
- uint32_t ms = GET_MILLIS();
- uint8_t h8;
- h8 = (ms / (3600000L)) & 0xFF;
- return h8;
-}
-
-///@}
-
-#endif
diff --git a/lib/lib8tion/math8.h b/lib/lib8tion/math8.h
deleted file mode 100644
index 8c6b6c227e..0000000000
--- a/lib/lib8tion/math8.h
+++ /dev/null
@@ -1,552 +0,0 @@
-#ifndef __INC_LIB8TION_MATH_H
-#define __INC_LIB8TION_MATH_H
-
-#include "scale8.h"
-
-///@ingroup lib8tion
-
-///@defgroup Math Basic math operations
-/// Fast, efficient 8-bit math functions specifically
-/// designed for high-performance LED programming.
-///
-/// Because of the AVR(Arduino) and ARM assembly language
-/// implementations provided, using these functions often
-/// results in smaller and faster code than the equivalent
-/// program using plain "C" arithmetic and logic.
-///@{
-
-
-/// add one byte to another, saturating at 0xFF
-/// @param i - first byte to add
-/// @param j - second byte to add
-/// @returns the sum of i & j, capped at 0xFF
-LIB8STATIC_ALWAYS_INLINE uint8_t qadd8( uint8_t i, uint8_t j)
-{
-#if QADD8_C == 1
- uint16_t t = i + j;
- if (t > 255) t = 255;
- return t;
-#elif QADD8_AVRASM == 1
- asm volatile(
- /* First, add j to i, conditioning the C flag */
- "add %0, %1 \n\t"
-
- /* Now test the C flag.
- If C is clear, we branch around a load of 0xFF into i.
- If C is set, we go ahead and load 0xFF into i.
- */
- "brcc L_%= \n\t"
- "ldi %0, 0xFF \n\t"
- "L_%=: "
- : "+a" (i)
- : "a" (j) );
- return i;
-#elif QADD8_ARM_DSP_ASM == 1
- asm volatile( "uqadd8 %0, %0, %1" : "+r" (i) : "r" (j));
- return i;
-#else
-#error "No implementation for qadd8 available."
-#endif
-}
-
-/// Add one byte to another, saturating at 0x7F
-/// @param i - first byte to add
-/// @param j - second byte to add
-/// @returns the sum of i & j, capped at 0xFF
-LIB8STATIC_ALWAYS_INLINE int8_t qadd7( int8_t i, int8_t j)
-{
-#if QADD7_C == 1
- int16_t t = i + j;
- if (t > 127) t = 127;
- return t;
-#elif QADD7_AVRASM == 1
- asm volatile(
- /* First, add j to i, conditioning the V flag */
- "add %0, %1 \n\t"
-
- /* Now test the V flag.
- If V is clear, we branch around a load of 0x7F into i.
- If V is set, we go ahead and load 0x7F into i.
- */
- "brvc L_%= \n\t"
- "ldi %0, 0x7F \n\t"
- "L_%=: "
- : "+a" (i)
- : "a" (j) );
-
- return i;
-#elif QADD7_ARM_DSP_ASM == 1
- asm volatile( "qadd8 %0, %0, %1" : "+r" (i) : "r" (j));
- return i;
-#else
-#error "No implementation for qadd7 available."
-#endif
-}
-
-/// subtract one byte from another, saturating at 0x00
-/// @returns i - j with a floor of 0
-LIB8STATIC_ALWAYS_INLINE uint8_t qsub8( uint8_t i, uint8_t j)
-{
-#if QSUB8_C == 1
- int16_t t = i - j;
- if (t < 0) t = 0;
- return t;
-#elif QSUB8_AVRASM == 1
-
- asm volatile(
- /* First, subtract j from i, conditioning the C flag */
- "sub %0, %1 \n\t"
-
- /* Now test the C flag.
- If C is clear, we branch around a load of 0x00 into i.
- If C is set, we go ahead and load 0x00 into i.
- */
- "brcc L_%= \n\t"
- "ldi %0, 0x00 \n\t"
- "L_%=: "
- : "+a" (i)
- : "a" (j) );
-
- return i;
-#else
-#error "No implementation for qsub8 available."
-#endif
-}
-
-/// add one byte to another, with one byte result
-LIB8STATIC_ALWAYS_INLINE uint8_t add8( uint8_t i, uint8_t j)
-{
-#if ADD8_C == 1
- uint16_t t = i + j;
- return t;
-#elif ADD8_AVRASM == 1
- // Add j to i, period.
- asm volatile( "add %0, %1" : "+a" (i) : "a" (j));
- return i;
-#else
-#error "No implementation for add8 available."
-#endif
-}
-
-/// add one byte to another, with one byte result
-LIB8STATIC_ALWAYS_INLINE uint16_t add8to16( uint8_t i, uint16_t j)
-{
-#if ADD8_C == 1
- uint16_t t = i + j;
- return t;
-#elif ADD8_AVRASM == 1
- // Add i(one byte) to j(two bytes)
- asm volatile( "add %A[j], %[i] \n\t"
- "adc %B[j], __zero_reg__ \n\t"
- : [j] "+a" (j)
- : [i] "a" (i)
- );
- return i;
-#else
-#error "No implementation for add8to16 available."
-#endif
-}
-
-
-/// subtract one byte from another, 8-bit result
-LIB8STATIC_ALWAYS_INLINE uint8_t sub8( uint8_t i, uint8_t j)
-{
-#if SUB8_C == 1
- int16_t t = i - j;
- return t;
-#elif SUB8_AVRASM == 1
- // Subtract j from i, period.
- asm volatile( "sub %0, %1" : "+a" (i) : "a" (j));
- return i;
-#else
-#error "No implementation for sub8 available."
-#endif
-}
-
-/// Calculate an integer average of two unsigned
-/// 8-bit integer values (uint8_t).
-/// Fractional results are rounded down, e.g. avg8(20,41) = 30
-LIB8STATIC_ALWAYS_INLINE uint8_t avg8( uint8_t i, uint8_t j)
-{
-#if AVG8_C == 1
- return (i + j) >> 1;
-#elif AVG8_AVRASM == 1
- asm volatile(
- /* First, add j to i, 9th bit overflows into C flag */
- "add %0, %1 \n\t"
- /* Divide by two, moving C flag into high 8th bit */
- "ror %0 \n\t"
- : "+a" (i)
- : "a" (j) );
- return i;
-#else
-#error "No implementation for avg8 available."
-#endif
-}
-
-/// Calculate an integer average of two unsigned
-/// 16-bit integer values (uint16_t).
-/// Fractional results are rounded down, e.g. avg16(20,41) = 30
-LIB8STATIC_ALWAYS_INLINE uint16_t avg16( uint16_t i, uint16_t j)
-{
-#if AVG16_C == 1
- return (uint32_t)((uint32_t)(i) + (uint32_t)(j)) >> 1;
-#elif AVG16_AVRASM == 1
- asm volatile(
- /* First, add jLo (heh) to iLo, 9th bit overflows into C flag */
- "add %A[i], %A[j] \n\t"
- /* Now, add C + jHi to iHi, 17th bit overflows into C flag */
- "adc %B[i], %B[j] \n\t"
- /* Divide iHi by two, moving C flag into high 16th bit, old 9th bit now in C */
- "ror %B[i] \n\t"
- /* Divide iLo by two, moving C flag into high 8th bit */
- "ror %A[i] \n\t"
- : [i] "+a" (i)
- : [j] "a" (j) );
- return i;
-#else
-#error "No implementation for avg16 available."
-#endif
-}
-
-
-/// Calculate an integer average of two signed 7-bit
-/// integers (int8_t)
-/// If the first argument is even, result is rounded down.
-/// If the first argument is odd, result is result up.
-LIB8STATIC_ALWAYS_INLINE int8_t avg7( int8_t i, int8_t j)
-{
-#if AVG7_C == 1
- return ((i + j) >> 1) + (i & 0x1);
-#elif AVG7_AVRASM == 1
- asm volatile(
- "asr %1 \n\t"
- "asr %0 \n\t"
- "adc %0, %1 \n\t"
- : "+a" (i)
- : "a" (j) );
- return i;
-#else
-#error "No implementation for avg7 available."
-#endif
-}
-
-/// Calculate an integer average of two signed 15-bit
-/// integers (int16_t)
-/// If the first argument is even, result is rounded down.
-/// If the first argument is odd, result is result up.
-LIB8STATIC_ALWAYS_INLINE int16_t avg15( int16_t i, int16_t j)
-{
-#if AVG15_C == 1
- return ((int32_t)((int32_t)(i) + (int32_t)(j)) >> 1) + (i & 0x1);
-#elif AVG15_AVRASM == 1
- asm volatile(
- /* first divide j by 2, throwing away lowest bit */
- "asr %B[j] \n\t"
- "ror %A[j] \n\t"
- /* now divide i by 2, with lowest bit going into C */
- "asr %B[i] \n\t"
- "ror %A[i] \n\t"
- /* add j + C to i */
- "adc %A[i], %A[j] \n\t"
- "adc %B[i], %B[j] \n\t"
- : [i] "+a" (i)
- : [j] "a" (j) );
- return i;
-#else
-#error "No implementation for avg15 available."
-#endif
-}
-
-
-/// Calculate the remainder of one unsigned 8-bit
-/// value divided by anoter, aka A % M.
-/// Implemented by repeated subtraction, which is
-/// very compact, and very fast if A is 'probably'
-/// less than M. If A is a large multiple of M,
-/// the loop has to execute multiple times. However,
-/// even in that case, the loop is only two
-/// instructions long on AVR, i.e., quick.
-LIB8STATIC_ALWAYS_INLINE uint8_t mod8( uint8_t a, uint8_t m)
-{
-#if defined(__AVR__)
- asm volatile (
- "L_%=: sub %[a],%[m] \n\t"
- " brcc L_%= \n\t"
- " add %[a],%[m] \n\t"
- : [a] "+r" (a)
- : [m] "r" (m)
- );
-#else
- while( a >= m) a -= m;
-#endif
- return a;
-}
-
-/// Add two numbers, and calculate the modulo
-/// of the sum and a third number, M.
-/// In other words, it returns (A+B) % M.
-/// It is designed as a compact mechanism for
-/// incrementing a 'mode' switch and wrapping
-/// around back to 'mode 0' when the switch
-/// goes past the end of the available range.
-/// e.g. if you have seven modes, this switches
-/// to the next one and wraps around if needed:
-/// mode = addmod8( mode, 1, 7);
-///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
-LIB8STATIC uint8_t addmod8( uint8_t a, uint8_t b, uint8_t m)
-{
-#if defined(__AVR__)
- asm volatile (
- " add %[a],%[b] \n\t"
- "L_%=: sub %[a],%[m] \n\t"
- " brcc L_%= \n\t"
- " add %[a],%[m] \n\t"
- : [a] "+r" (a)
- : [b] "r" (b), [m] "r" (m)
- );
-#else
- a += b;
- while( a >= m) a -= m;
-#endif
- return a;
-}
-
-/// Subtract two numbers, and calculate the modulo
-/// of the difference and a third number, M.
-/// In other words, it returns (A-B) % M.
-/// It is designed as a compact mechanism for
-/// incrementing a 'mode' switch and wrapping
-/// around back to 'mode 0' when the switch
-/// goes past the end of the available range.
-/// e.g. if you have seven modes, this switches
-/// to the next one and wraps around if needed:
-/// mode = addmod8( mode, 1, 7);
-///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
-LIB8STATIC uint8_t submod8( uint8_t a, uint8_t b, uint8_t m)
-{
-#if defined(__AVR__)
- asm volatile (
- " sub %[a],%[b] \n\t"
- "L_%=: sub %[a],%[m] \n\t"
- " brcc L_%= \n\t"
- " add %[a],%[m] \n\t"
- : [a] "+r" (a)
- : [b] "r" (b), [m] "r" (m)
- );
-#else
- a -= b;
- while( a >= m) a -= m;
-#endif
- return a;
-}
-
-/// 8x8 bit multiplication, with 8 bit result
-LIB8STATIC_ALWAYS_INLINE uint8_t mul8( uint8_t i, uint8_t j)
-{
-#if MUL8_C == 1
- return ((uint16_t)i * (uint16_t)(j) ) & 0xFF;
-#elif MUL8_AVRASM == 1
- asm volatile(
- /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
- "mul %0, %1 \n\t"
- /* Extract the LOW 8-bits (r0) */
- "mov %0, r0 \n\t"
- /* Restore r1 to "0"; it's expected to always be that */
- "clr __zero_reg__ \n\t"
- : "+a" (i)
- : "a" (j)
- : "r0", "r1");
-
- return i;
-#else
-#error "No implementation for mul8 available."
-#endif
-}
-
-
-/// saturating 8x8 bit multiplication, with 8 bit result
-/// @returns the product of i * j, capping at 0xFF
-LIB8STATIC_ALWAYS_INLINE uint8_t qmul8( uint8_t i, uint8_t j)
-{
-#if QMUL8_C == 1
- int p = ((uint16_t)i * (uint16_t)(j) );
- if( p > 255) p = 255;
- return p;
-#elif QMUL8_AVRASM == 1
- asm volatile(
- /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
- " mul %0, %1 \n\t"
- /* If high byte of result is zero, all is well. */
- " tst r1 \n\t"
- " breq Lnospill_%= \n\t"
- /* If high byte of result > 0, saturate low byte to 0xFF */
- " ldi %0,0xFF \n\t"
- " rjmp Ldone_%= \n\t"
- "Lnospill_%=: \n\t"
- /* Extract the LOW 8-bits (r0) */
- " mov %0, r0 \n\t"
- "Ldone_%=: \n\t"
- /* Restore r1 to "0"; it's expected to always be that */
- " clr __zero_reg__ \n\t"
- : "+a" (i)
- : "a" (j)
- : "r0", "r1");
-
- return i;
-#else
-#error "No implementation for qmul8 available."
-#endif
-}
-
-
-/// take abs() of a signed 8-bit uint8_t
-LIB8STATIC_ALWAYS_INLINE int8_t abs8( int8_t i)
-{
-#if ABS8_C == 1
- if( i < 0) i = -i;
- return i;
-#elif ABS8_AVRASM == 1
-
-
- asm volatile(
- /* First, check the high bit, and prepare to skip if it's clear */
- "sbrc %0, 7 \n"
-
- /* Negate the value */
- "neg %0 \n"
-
- : "+r" (i) : "r" (i) );
- return i;
-#else
-#error "No implementation for abs8 available."
-#endif
-}
-
-/// square root for 16-bit integers
-/// About three times faster and five times smaller
-/// than Arduino's general sqrt on AVR.
-LIB8STATIC uint8_t sqrt16(uint16_t x)
-{
- if( x <= 1) {
- return x;
- }
-
- uint8_t low = 1; // lower bound
- uint8_t hi, mid;
-
- if( x > 7904) {
- hi = 255;
- } else {
- hi = (x >> 5) + 8; // initial estimate for upper bound
- }
-
- do {
- mid = (low + hi) >> 1;
- if ((uint16_t)(mid * mid) > x) {
- hi = mid - 1;
- } else {
- if( mid == 255) {
- return 255;
- }
- low = mid + 1;
- }
- } while (hi >= low);
-
- return low - 1;
-}
-
-/// blend a variable proproportion(0-255) of one byte to another
-/// @param a - the starting byte value
-/// @param b - the byte value to blend toward
-/// @param amountOfB - the proportion (0-255) of b to blend
-/// @returns a byte value between a and b, inclusive
-#if (FASTLED_BLEND_FIXED == 1)
-LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
-{
-#if BLEND8_C == 1
- uint16_t partial;
- uint8_t result;
-
- uint8_t amountOfA = 255 - amountOfB;
-
- partial = (a * amountOfA);
-#if (FASTLED_SCALE8_FIXED == 1)
- partial += a;
- //partial = add8to16( a, partial);
-#endif
-
- partial += (b * amountOfB);
-#if (FASTLED_SCALE8_FIXED == 1)
- partial += b;
- //partial = add8to16( b, partial);
-#endif
-
- result = partial >> 8;
-
- return result;
-
-#elif BLEND8_AVRASM == 1
- uint16_t partial;
- uint8_t result;
-
- asm volatile (
- /* partial = b * amountOfB */
- " mul %[b], %[amountOfB] \n\t"
- " movw %A[partial], r0 \n\t"
-
- /* amountOfB (aka amountOfA) = 255 - amountOfB */
- " com %[amountOfB] \n\t"
-
- /* partial += a * amountOfB (aka amountOfA) */
- " mul %[a], %[amountOfB] \n\t"
-
- " add %A[partial], r0 \n\t"
- " adc %B[partial], r1 \n\t"
-
- " clr __zero_reg__ \n\t"
-
-#if (FASTLED_SCALE8_FIXED == 1)
- /* partial += a */
- " add %A[partial], %[a] \n\t"
- " adc %B[partial], __zero_reg__ \n\t"
-
- // partial += b
- " add %A[partial], %[b] \n\t"
- " adc %B[partial], __zero_reg__ \n\t"
-#endif
-
- : [partial] "=r" (partial),
- [amountOfB] "+a" (amountOfB)
- : [a] "a" (a),
- [b] "a" (b)
- : "r0", "r1"
- );
-
- result = partial >> 8;
-
- return result;
-
-#else
-#error "No implementation for blend8 available."
-#endif
-}
-
-#else
-LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
-{
- // This version loses precision in the integer math
- // and can actually return results outside of the range
- // from a to b. Its use is not recommended.
- uint8_t result;
- uint8_t amountOfA = 255 - amountOfB;
- result = scale8_LEAVING_R1_DIRTY( a, amountOfA)
- + scale8_LEAVING_R1_DIRTY( b, amountOfB);
- cleanup_R1();
- return result;
-}
-#endif
-
-
-///@}
-#endif
diff --git a/lib/lib8tion/random8.h b/lib/lib8tion/random8.h
deleted file mode 100644
index 7ee67cbb36..0000000000
--- a/lib/lib8tion/random8.h
+++ /dev/null
@@ -1,94 +0,0 @@
-#ifndef __INC_LIB8TION_RANDOM_H
-#define __INC_LIB8TION_RANDOM_H
-///@ingroup lib8tion
-
-///@defgroup Random Fast random number generators
-/// Fast 8- and 16- bit unsigned random numbers.
-/// Significantly faster than Arduino random(), but
-/// also somewhat less random. You can add entropy.
-///@{
-
-// X(n+1) = (2053 * X(n)) + 13849)
-#define FASTLED_RAND16_2053 ((uint16_t)(2053))
-#define FASTLED_RAND16_13849 ((uint16_t)(13849))
-
-/// random number seed
-extern uint16_t rand16seed;// = RAND16_SEED;
-
-/// Generate an 8-bit random number
-LIB8STATIC uint8_t random8(void)
-{
- rand16seed = (rand16seed * FASTLED_RAND16_2053) + FASTLED_RAND16_13849;
- // return the sum of the high and low bytes, for better
- // mixing and non-sequential correlation
- return (uint8_t)(((uint8_t)(rand16seed & 0xFF)) +
- ((uint8_t)(rand16seed >> 8)));
-}
-
-/// Generate a 16 bit random number
-LIB8STATIC uint16_t random16(void)
-{
- rand16seed = (rand16seed * FASTLED_RAND16_2053) + FASTLED_RAND16_13849;
- return rand16seed;
-}
-
-/// Generate an 8-bit random number between 0 and lim
-/// @param lim the upper bound for the result
-LIB8STATIC uint8_t random8_max(uint8_t lim)
-{
- uint8_t r = random8();
- r = (r*lim) >> 8;
- return r;
-}
-
-/// Generate an 8-bit random number in the given range
-/// @param min the lower bound for the random number
-/// @param lim the upper bound for the random number
-LIB8STATIC uint8_t random8_min_max(uint8_t min, uint8_t lim)
-{
- uint8_t delta = lim - min;
- uint8_t r = random8_max(delta) + min;
- return r;
-}
-
-/// Generate an 16-bit random number between 0 and lim
-/// @param lim the upper bound for the result
-LIB8STATIC uint16_t random16_max(uint16_t lim)
-{
- uint16_t r = random16();
- uint32_t p = (uint32_t)lim * (uint32_t)r;
- r = p >> 16;
- return r;
-}
-
-/// Generate an 16-bit random number in the given range
-/// @param min the lower bound for the random number
-/// @param lim the upper bound for the random number
-LIB8STATIC uint16_t random16_min_max( uint16_t min, uint16_t lim)
-{
- uint16_t delta = lim - min;
- uint16_t r = random16_max(delta) + min;
- return r;
-}
-
-/// Set the 16-bit seed used for the random number generator
-LIB8STATIC void random16_set_seed(uint16_t seed)
-{
- rand16seed = seed;
-}
-
-/// Get the current seed value for the random number generator
-LIB8STATIC uint16_t random16_get_seed(void)
-{
- return rand16seed;
-}
-
-/// Add entropy into the random number generator
-LIB8STATIC void random16_add_entropy(uint16_t entropy)
-{
- rand16seed += entropy;
-}
-
-///@}
-
-#endif
diff --git a/lib/lib8tion/scale8.h b/lib/lib8tion/scale8.h
deleted file mode 100644
index 9895fd4d79..0000000000
--- a/lib/lib8tion/scale8.h
+++ /dev/null
@@ -1,542 +0,0 @@
-#ifndef __INC_LIB8TION_SCALE_H
-#define __INC_LIB8TION_SCALE_H
-
-///@ingroup lib8tion
-
-///@defgroup Scaling Scaling functions
-/// Fast, efficient 8-bit scaling functions specifically
-/// designed for high-performance LED programming.
-///
-/// Because of the AVR(Arduino) and ARM assembly language
-/// implementations provided, using these functions often
-/// results in smaller and faster code than the equivalent
-/// program using plain "C" arithmetic and logic.
-///@{
-
-/// scale one byte by a second one, which is treated as
-/// the numerator of a fraction whose denominator is 256
-/// In other words, it computes i * (scale / 256)
-/// 4 clocks AVR with MUL, 2 clocks ARM
-LIB8STATIC_ALWAYS_INLINE uint8_t scale8( uint8_t i, fract8 scale)
-{
-#if SCALE8_C == 1
-#if (FASTLED_SCALE8_FIXED == 1)
- return (((uint16_t)i) * (1+(uint16_t)(scale))) >> 8;
-#else
- return ((uint16_t)i * (uint16_t)(scale) ) >> 8;
-#endif
-#elif SCALE8_AVRASM == 1
-#if defined(LIB8_ATTINY)
-#if (FASTLED_SCALE8_FIXED == 1)
- uint8_t work=i;
-#else
- uint8_t work=0;
-#endif
- uint8_t cnt=0x80;
- asm volatile(
-#if (FASTLED_SCALE8_FIXED == 1)
- " inc %[scale] \n\t"
- " breq DONE_%= \n\t"
- " clr %[work] \n\t"
-#endif
- "LOOP_%=: \n\t"
- /*" sbrc %[scale], 0 \n\t"
- " add %[work], %[i] \n\t"
- " ror %[work] \n\t"
- " lsr %[scale] \n\t"
- " clc \n\t"*/
- " sbrc %[scale], 0 \n\t"
- " add %[work], %[i] \n\t"
- " ror %[work] \n\t"
- " lsr %[scale] \n\t"
- " lsr %[cnt] \n\t"
- "brcc LOOP_%= \n\t"
- "DONE_%=: \n\t"
- : [work] "+r" (work), [cnt] "+r" (cnt)
- : [scale] "r" (scale), [i] "r" (i)
- :
- );
- return work;
-#else
- asm volatile(
-#if (FASTLED_SCALE8_FIXED==1)
- // Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
- "mul %0, %1 \n\t"
- // Add i to r0, possibly setting the carry flag
- "add r0, %0 \n\t"
- // load the immediate 0 into i (note, this does _not_ touch any flags)
- "ldi %0, 0x00 \n\t"
- // walk and chew gum at the same time
- "adc %0, r1 \n\t"
-#else
- /* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
- "mul %0, %1 \n\t"
- /* Move the high 8-bits of the product (r1) back to i */
- "mov %0, r1 \n\t"
- /* Restore r1 to "0"; it's expected to always be that */
-#endif
- "clr __zero_reg__ \n\t"
-
- : "+a" (i) /* writes to i */
- : "a" (scale) /* uses scale */
- : "r0", "r1" /* clobbers r0, r1 */ );
-
- /* Return the result */
- return i;
-#endif
-#else
-#error "No implementation for scale8 available."
-#endif
-}
-
-
-/// The "video" version of scale8 guarantees that the output will
-/// be only be zero if one or both of the inputs are zero. If both
-/// inputs are non-zero, the output is guaranteed to be non-zero.
-/// This makes for better 'video'/LED dimming, at the cost of
-/// several additional cycles.
-LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video( uint8_t i, fract8 scale)
-{
-#if SCALE8_C == 1 || defined(LIB8_ATTINY)
- uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
- // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
- // uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
- return j;
-#elif SCALE8_AVRASM == 1
- uint8_t j=0;
- asm volatile(
- " tst %[i]\n\t"
- " breq L_%=\n\t"
- " mul %[i], %[scale]\n\t"
- " mov %[j], r1\n\t"
- " clr __zero_reg__\n\t"
- " cpse %[scale], r1\n\t"
- " subi %[j], 0xFF\n\t"
- "L_%=: \n\t"
- : [j] "+a" (j)
- : [i] "a" (i), [scale] "a" (scale)
- : "r0", "r1");
-
- return j;
- // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
- // asm volatile(
- // " tst %0 \n"
- // " breq L_%= \n"
- // " mul %0, %1 \n"
- // " mov %0, r1 \n"
- // " add %0, %2 \n"
- // " clr __zero_reg__ \n"
- // "L_%=: \n"
-
- // : "+a" (i)
- // : "a" (scale), "a" (nonzeroscale)
- // : "r0", "r1");
-
- // // Return the result
- // return i;
-#else
-#error "No implementation for scale8_video available."
-#endif
-}
-
-
-/// This version of scale8 does not clean up the R1 register on AVR
-/// If you are doing several 'scale8's in a row, use this, and
-/// then explicitly call cleanup_R1.
-LIB8STATIC_ALWAYS_INLINE uint8_t scale8_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
-{
-#if SCALE8_C == 1
-#if (FASTLED_SCALE8_FIXED == 1)
- return (((uint16_t)i) * ((uint16_t)(scale)+1)) >> 8;
-#else
- return ((int)i * (int)(scale) ) >> 8;
-#endif
-#elif SCALE8_AVRASM == 1
- asm volatile(
- #if (FASTLED_SCALE8_FIXED==1)
- // Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
- "mul %0, %1 \n\t"
- // Add i to r0, possibly setting the carry flag
- "add r0, %0 \n\t"
- // load the immediate 0 into i (note, this does _not_ touch any flags)
- "ldi %0, 0x00 \n\t"
- // walk and chew gum at the same time
- "adc %0, r1 \n\t"
- #else
- /* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
- "mul %0, %1 \n\t"
- /* Move the high 8-bits of the product (r1) back to i */
- "mov %0, r1 \n\t"
- #endif
- /* R1 IS LEFT DIRTY HERE; YOU MUST ZERO IT OUT YOURSELF */
- /* "clr __zero_reg__ \n\t" */
-
- : "+a" (i) /* writes to i */
- : "a" (scale) /* uses scale */
- : "r0", "r1" /* clobbers r0, r1 */ );
-
- // Return the result
- return i;
-#else
-#error "No implementation for scale8_LEAVING_R1_DIRTY available."
-#endif
-}
-
-
-/// This version of scale8_video does not clean up the R1 register on AVR
-/// If you are doing several 'scale8_video's in a row, use this, and
-/// then explicitly call cleanup_R1.
-LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
-{
-#if SCALE8_C == 1 || defined(LIB8_ATTINY)
- uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
- // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
- // uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
- return j;
-#elif SCALE8_AVRASM == 1
- uint8_t j=0;
- asm volatile(
- " tst %[i]\n\t"
- " breq L_%=\n\t"
- " mul %[i], %[scale]\n\t"
- " mov %[j], r1\n\t"
- " breq L_%=\n\t"
- " subi %[j], 0xFF\n\t"
- "L_%=: \n\t"
- : [j] "+a" (j)
- : [i] "a" (i), [scale] "a" (scale)
- : "r0", "r1");
-
- return j;
- // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
- // asm volatile(
- // " tst %0 \n"
- // " breq L_%= \n"
- // " mul %0, %1 \n"
- // " mov %0, r1 \n"
- // " add %0, %2 \n"
- // " clr __zero_reg__ \n"
- // "L_%=: \n"
-
- // : "+a" (i)
- // : "a" (scale), "a" (nonzeroscale)
- // : "r0", "r1");
-
- // // Return the result
- // return i;
-#else
-#error "No implementation for scale8_video_LEAVING_R1_DIRTY available."
-#endif
-}
-
-/// Clean up the r1 register after a series of *LEAVING_R1_DIRTY calls
-LIB8STATIC_ALWAYS_INLINE void cleanup_R1(void)
-{
-#if CLEANUP_R1_AVRASM == 1
- // Restore r1 to "0"; it's expected to always be that
- asm volatile( "clr __zero_reg__ \n\t" : : : "r1" );
-#endif
-}
-
-
-/// scale a 16-bit unsigned value by an 8-bit value,
-/// considered as numerator of a fraction whose denominator
-/// is 256. In other words, it computes i * (scale / 256)
-
-LIB8STATIC_ALWAYS_INLINE uint16_t scale16by8( uint16_t i, fract8 scale )
-{
-#if SCALE16BY8_C == 1
- uint16_t result;
-#if FASTLED_SCALE8_FIXED == 1
- result = (i * (1+((uint16_t)scale))) >> 8;
-#else
- result = (i * scale) / 256;
-#endif
- return result;
-#elif SCALE16BY8_AVRASM == 1
-#if FASTLED_SCALE8_FIXED == 1
- uint16_t result = 0;
- asm volatile(
- // result.A = HighByte( (i.A x scale) + i.A )
- " mul %A[i], %[scale] \n\t"
- " add r0, %A[i] \n\t"
- // " adc r1, [zero] \n\t"
- // " mov %A[result], r1 \n\t"
- " adc %A[result], r1 \n\t"
-
- // result.A-B += i.B x scale
- " mul %B[i], %[scale] \n\t"
- " add %A[result], r0 \n\t"
- " adc %B[result], r1 \n\t"
-
- // cleanup r1
- " clr __zero_reg__ \n\t"
-
- // result.A-B += i.B
- " add %A[result], %B[i] \n\t"
- " adc %B[result], __zero_reg__ \n\t"
-
- : [result] "+r" (result)
- : [i] "r" (i), [scale] "r" (scale)
- : "r0", "r1"
- );
- return result;
-#else
- uint16_t result = 0;
- asm volatile(
- // result.A = HighByte(i.A x j )
- " mul %A[i], %[scale] \n\t"
- " mov %A[result], r1 \n\t"
- //" clr %B[result] \n\t"
-
- // result.A-B += i.B x j
- " mul %B[i], %[scale] \n\t"
- " add %A[result], r0 \n\t"
- " adc %B[result], r1 \n\t"
-
- // cleanup r1
- " clr __zero_reg__ \n\t"
-
- : [result] "+r" (result)
- : [i] "r" (i), [scale] "r" (scale)
- : "r0", "r1"
- );
- return result;
-#endif
-#else
- #error "No implementation for scale16by8 available."
-#endif
-}
-
-/// scale a 16-bit unsigned value by a 16-bit value,
-/// considered as numerator of a fraction whose denominator
-/// is 65536. In other words, it computes i * (scale / 65536)
-
-LIB8STATIC uint16_t scale16( uint16_t i, fract16 scale )
-{
- #if SCALE16_C == 1
- uint16_t result;
-#if FASTLED_SCALE8_FIXED == 1
- result = ((uint32_t)(i) * (1+(uint32_t)(scale))) / 65536;
-#else
- result = ((uint32_t)(i) * (uint32_t)(scale)) / 65536;
-#endif
- return result;
-#elif SCALE16_AVRASM == 1
-#if FASTLED_SCALE8_FIXED == 1
- // implemented sort of like
- // result = ((i * scale) + i ) / 65536
- //
- // why not like this, you may ask?
- // result = (i * (scale+1)) / 65536
- // the answer is that if scale is 65535, then scale+1
- // will be zero, which is not what we want.
- uint32_t result;
- asm volatile(
- // result.A-B = i.A x scale.A
- " mul %A[i], %A[scale] \n\t"
- // save results...
- // basic idea:
- //" mov %A[result], r0 \n\t"
- //" mov %B[result], r1 \n\t"
- // which can be written as...
- " movw %A[result], r0 \n\t"
- // Because we're going to add i.A-B to
- // result.A-D, we DO need to keep both
- // the r0 and r1 portions of the product
- // UNlike in the 'unfixed scale8' version.
- // So the movw here is needed.
- : [result] "=r" (result)
- : [i] "r" (i),
- [scale] "r" (scale)
- : "r0", "r1"
- );
-
- asm volatile(
- // result.C-D = i.B x scale.B
- " mul %B[i], %B[scale] \n\t"
- //" mov %C[result], r0 \n\t"
- //" mov %D[result], r1 \n\t"
- " movw %C[result], r0 \n\t"
- : [result] "+r" (result)
- : [i] "r" (i),
- [scale] "r" (scale)
- : "r0", "r1"
- );
-
- const uint8_t zero = 0;
- asm volatile(
- // result.B-D += i.B x scale.A
- " mul %B[i], %A[scale] \n\t"
-
- " add %B[result], r0 \n\t"
- " adc %C[result], r1 \n\t"
- " adc %D[result], %[zero] \n\t"
-
- // result.B-D += i.A x scale.B
- " mul %A[i], %B[scale] \n\t"
-
- " add %B[result], r0 \n\t"
- " adc %C[result], r1 \n\t"
- " adc %D[result], %[zero] \n\t"
-
- // cleanup r1
- " clr r1 \n\t"
-
- : [result] "+r" (result)
- : [i] "r" (i),
- [scale] "r" (scale),
- [zero] "r" (zero)
- : "r0", "r1"
- );
-
- asm volatile(
- // result.A-D += i.A-B
- " add %A[result], %A[i] \n\t"
- " adc %B[result], %B[i] \n\t"
- " adc %C[result], %[zero] \n\t"
- " adc %D[result], %[zero] \n\t"
- : [result] "+r" (result)
- : [i] "r" (i),
- [zero] "r" (zero)
- );
-
- result = result >> 16;
- return result;
-#else
- uint32_t result;
- asm volatile(
- // result.A-B = i.A x scale.A
- " mul %A[i], %A[scale] \n\t"
- // save results...
- // basic idea:
- //" mov %A[result], r0 \n\t"
- //" mov %B[result], r1 \n\t"
- // which can be written as...
- " movw %A[result], r0 \n\t"
- // We actually don't need to do anything with r0,
- // as result.A is never used again here, so we
- // could just move the high byte, but movw is
- // one clock cycle, just like mov, so might as
- // well, in case we want to use this code for
- // a generic 16x16 multiply somewhere.
-
- : [result] "=r" (result)
- : [i] "r" (i),
- [scale] "r" (scale)
- : "r0", "r1"
- );
-
- asm volatile(
- // result.C-D = i.B x scale.B
- " mul %B[i], %B[scale] \n\t"
- //" mov %C[result], r0 \n\t"
- //" mov %D[result], r1 \n\t"
- " movw %C[result], r0 \n\t"
- : [result] "+r" (result)
- : [i] "r" (i),
- [scale] "r" (scale)
- : "r0", "r1"
- );
-
- const uint8_t zero = 0;
- asm volatile(
- // result.B-D += i.B x scale.A
- " mul %B[i], %A[scale] \n\t"
-
- " add %B[result], r0 \n\t"
- " adc %C[result], r1 \n\t"
- " adc %D[result], %[zero] \n\t"
-
- // result.B-D += i.A x scale.B
- " mul %A[i], %B[scale] \n\t"
-
- " add %B[result], r0 \n\t"
- " adc %C[result], r1 \n\t"
- " adc %D[result], %[zero] \n\t"
-
- // cleanup r1
- " clr r1 \n\t"
-
- : [result] "+r" (result)
- : [i] "r" (i),
- [scale] "r" (scale),
- [zero] "r" (zero)
- : "r0", "r1"
- );
-
- result = result >> 16;
- return result;
-#endif
-#else
- #error "No implementation for scale16 available."
-#endif
-}
-///@}
-
-///@defgroup Dimming Dimming and brightening functions
-///
-/// Dimming and brightening functions
-///
-/// The eye does not respond in a linear way to light.
-/// High speed PWM'd LEDs at 50% duty cycle appear far
-/// brighter then the 'half as bright' you might expect.
-///
-/// If you want your midpoint brightness leve (128) to
-/// appear half as bright as 'full' brightness (255), you
-/// have to apply a 'dimming function'.
-///@{
-
-/// Adjust a scaling value for dimming
-LIB8STATIC uint8_t dim8_raw( uint8_t x)
-{
- return scale8( x, x);
-}
-
-/// Adjust a scaling value for dimming for video (value will never go below 1)
-LIB8STATIC uint8_t dim8_video( uint8_t x)
-{
- return scale8_video( x, x);
-}
-
-/// Linear version of the dimming function that halves for values < 128
-LIB8STATIC uint8_t dim8_lin( uint8_t x )
-{
- if( x & 0x80 ) {
- x = scale8( x, x);
- } else {
- x += 1;
- x /= 2;
- }
- return x;
-}
-
-/// inverse of the dimming function, brighten a value
-LIB8STATIC uint8_t brighten8_raw( uint8_t x)
-{
- uint8_t ix = 255 - x;
- return 255 - scale8( ix, ix);
-}
-
-/// inverse of the dimming function, brighten a value
-LIB8STATIC uint8_t brighten8_video( uint8_t x)
-{
- uint8_t ix = 255 - x;
- return 255 - scale8_video( ix, ix);
-}
-
-/// inverse of the dimming function, brighten a value
-LIB8STATIC uint8_t brighten8_lin( uint8_t x )
-{
- uint8_t ix = 255 - x;
- if( ix & 0x80 ) {
- ix = scale8( ix, ix);
- } else {
- ix += 1;
- ix /= 2;
- }
- return 255 - ix;
-}
-
-///@}
-#endif
diff --git a/lib/lib8tion/trig8.h b/lib/lib8tion/trig8.h
deleted file mode 100644
index cfba6373fb..0000000000
--- a/lib/lib8tion/trig8.h
+++ /dev/null
@@ -1,284 +0,0 @@
-#ifndef __INC_LIB8TION_TRIG_H
-#define __INC_LIB8TION_TRIG_H
-
-///@ingroup lib8tion
-
-///@defgroup Trig Fast trig functions
-/// Fast 8 and 16-bit approximations of sin(x) and cos(x).
-/// Don't use these approximations for calculating the
-/// trajectory of a rocket to Mars, but they're great
-/// for art projects and LED displays.
-///
-/// On Arduino/AVR, the 16-bit approximation is more than
-/// 10X faster than floating point sin(x) and cos(x), while
-/// the 8-bit approximation is more than 20X faster.
-///@{
-
-#if defined(__AVR__)
-#define sin16 sin16_avr
-#else
-#define sin16 sin16_C
-#endif
-
-/// Fast 16-bit approximation of sin(x). This approximation never varies more than
-/// 0.69% from the floating point value you'd get by doing
-///
-/// float s = sin(x) * 32767.0;
-///
-/// @param theta input angle from 0-65535
-/// @returns sin of theta, value between -32767 to 32767.
-LIB8STATIC int16_t sin16_avr( uint16_t theta )
-{
- static const uint8_t data[] =
- { 0, 0, 49, 0, 6393%256, 6393/256, 48, 0,
- 12539%256, 12539/256, 44, 0, 18204%256, 18204/256, 38, 0,
- 23170%256, 23170/256, 31, 0, 27245%256, 27245/256, 23, 0,
- 30273%256, 30273/256, 14, 0, 32137%256, 32137/256, 4 /*,0*/ };
-
- uint16_t offset = (theta & 0x3FFF);
-
- // AVR doesn't have a multi-bit shift instruction,
- // so if we say "offset >>= 3", gcc makes a tiny loop.
- // Inserting empty volatile statements between each
- // bit shift forces gcc to unroll the loop.
- offset >>= 1; // 0..8191
- asm volatile("");
- offset >>= 1; // 0..4095
- asm volatile("");
- offset >>= 1; // 0..2047
-
- if( theta & 0x4000 ) offset = 2047 - offset;
-
- uint8_t sectionX4;
- sectionX4 = offset / 256;
- sectionX4 *= 4;
-
- uint8_t m;
-
- union {
- uint16_t b;
- struct {
- uint8_t blo;
- uint8_t bhi;
- };
- } u;
-
- //in effect u.b = blo + (256 * bhi);
- u.blo = data[ sectionX4 ];
- u.bhi = data[ sectionX4 + 1];
- m = data[ sectionX4 + 2];
-
- uint8_t secoffset8 = (uint8_t)(offset) / 2;
-
- uint16_t mx = m * secoffset8;
-
- int16_t y = mx + u.b;
- if( theta & 0x8000 ) y = -y;
-
- return y;
-}
-
-/// Fast 16-bit approximation of sin(x). This approximation never varies more than
-/// 0.69% from the floating point value you'd get by doing
-///
-/// float s = sin(x) * 32767.0;
-///
-/// @param theta input angle from 0-65535
-/// @returns sin of theta, value between -32767 to 32767.
-LIB8STATIC int16_t sin16_C( uint16_t theta )
-{
- static const uint16_t base[] =
- { 0, 6393, 12539, 18204, 23170, 27245, 30273, 32137 };
- static const uint8_t slope[] =
- { 49, 48, 44, 38, 31, 23, 14, 4 };
-
- uint16_t offset = (theta & 0x3FFF) >> 3; // 0..2047
- if( theta & 0x4000 ) offset = 2047 - offset;
-
- uint8_t section = offset / 256; // 0..7
- uint16_t b = base[section];
- uint8_t m = slope[section];
-
- uint8_t secoffset8 = (uint8_t)(offset) / 2;
-
- uint16_t mx = m * secoffset8;
- int16_t y = mx + b;
-
- if( theta & 0x8000 ) y = -y;
-
- return y;
-}
-
-
-/// Fast 16-bit approximation of cos(x). This approximation never varies more than
-/// 0.69% from the floating point value you'd get by doing
-///
-/// float s = cos(x) * 32767.0;
-///
-/// @param theta input angle from 0-65535
-/// @returns sin of theta, value between -32767 to 32767.
-LIB8STATIC int16_t cos16( uint16_t theta)
-{
- return sin16( theta + 16384);
-}
-
-///////////////////////////////////////////////////////////////////////
-
-// sin8 & cos8
-// Fast 8-bit approximations of sin(x) & cos(x).
-// Input angle is an unsigned int from 0-255.
-// Output is an unsigned int from 0 to 255.
-//
-// This approximation can vary to to 2%
-// from the floating point value you'd get by doing
-// float s = (sin( x ) * 128.0) + 128;
-//
-// Don't use this approximation for calculating the
-// "real" trigonometric calculations, but it's great
-// for art projects and LED displays.
-//
-// On Arduino/AVR, this approximation is more than
-// 20X faster than floating point sin(x) and cos(x)
-
-#if defined(__AVR__) && !defined(LIB8_ATTINY)
-#define sin8 sin8_avr
-#else
-#define sin8 sin8_C
-#endif
-
-
-static const uint8_t b_m16_interleave[8] = { 0, 49, 49, 41, 90, 27, 117, 10 };
-
-/// Fast 8-bit approximation of sin(x). This approximation never varies more than
-/// 2% from the floating point value you'd get by doing
-///
-/// float s = (sin(x) * 128.0) + 128;
-///
-/// @param theta input angle from 0-255
-/// @returns sin of theta, value between 0 and 255
-LIB8STATIC uint8_t sin8_avr( uint8_t theta)
-{
- uint8_t offset = theta;
-
- asm volatile(
- "sbrc %[theta],6 \n\t"
- "com %[offset] \n\t"
- : [theta] "+r" (theta), [offset] "+r" (offset)
- );
-
- offset &= 0x3F; // 0..63
-
- uint8_t secoffset = offset & 0x0F; // 0..15
- if( theta & 0x40) secoffset++;
-
- uint8_t m16; uint8_t b;
-
- uint8_t section = offset >> 4; // 0..3
- uint8_t s2 = section * 2;
-
- const uint8_t* p = b_m16_interleave;
- p += s2;
- b = *p;
- p++;
- m16 = *p;
-
- uint8_t mx;
- uint8_t xr1;
- asm volatile(
- "mul %[m16],%[secoffset] \n\t"
- "mov %[mx],r0 \n\t"
- "mov %[xr1],r1 \n\t"
- "eor r1, r1 \n\t"
- "swap %[mx] \n\t"
- "andi %[mx],0x0F \n\t"
- "swap %[xr1] \n\t"
- "andi %[xr1], 0xF0 \n\t"
- "or %[mx], %[xr1] \n\t"
- : [mx] "=d" (mx), [xr1] "=d" (xr1)
- : [m16] "d" (m16), [secoffset] "d" (secoffset)
- );
-
- int8_t y = mx + b;
- if( theta & 0x80 ) y = -y;
-
- y += 128;
-
- return y;
-}
-
-
-/// Fast 8-bit approximation of sin(x). This approximation never varies more than
-/// 2% from the floating point value you'd get by doing
-///
-/// float s = (sin(x) * 128.0) + 128;
-///
-/// @param theta input angle from 0-255
-/// @returns sin of theta, value between 0 and 255
-LIB8STATIC uint8_t sin8_C( uint8_t theta)
-{
- uint8_t offset = theta;
- if( theta & 0x40 ) {
- offset = (uint8_t)255 - offset;
- }
- offset &= 0x3F; // 0..63
-
- uint8_t secoffset = offset & 0x0F; // 0..15
- if( theta & 0x40) secoffset++;
-
- uint8_t section = offset >> 4; // 0..3
- uint8_t s2 = section * 2;
- const uint8_t* p = b_m16_interleave;
- p += s2;
- uint8_t b = *p;
- p++;
- uint8_t m16 = *p;
-
- uint8_t mx = (m16 * secoffset) >> 4;
-
- int8_t y = mx + b;
- if( theta & 0x80 ) y = -y;
-
- y += 128;
-
- return y;
-}
-
-/// Fast 8-bit approximation of cos(x). This approximation never varies more than
-/// 2% from the floating point value you'd get by doing
-///
-/// float s = (cos(x) * 128.0) + 128;
-///
-/// @param theta input angle from 0-255
-/// @returns sin of theta, value between 0 and 255
-LIB8STATIC uint8_t cos8( uint8_t theta)
-{
- return sin8( theta + 64);
-}
-
-/// Fast 16-bit approximation of atan2(x).
-/// @returns atan2, value between 0 and 255
-LIB8STATIC uint8_t atan2_8(int16_t dy, int16_t dx)
-{
- if (dy == 0)
- {
- if (dx >= 0)
- return 0;
- else
- return 128;
- }
-
- int16_t abs_y = dy > 0 ? dy : -dy;
- int8_t a;
-
- if (dx >= 0)
- a = 32 - (32 * (dx - abs_y) / (dx + abs_y));
- else
- a = 96 - (32 * (dx + abs_y) / (abs_y - dx));
-
- if (dy < 0)
- return -a; // negate if in quad III or IV
- return a;
-}
-
-///@}
-#endif