summaryrefslogtreecommitdiff
path: root/lib/lib8tion/scale8.h
diff options
context:
space:
mode:
authorvin <git@vineetk.net>2024-01-15 18:52:15 -0500
committervin <git@vineetk.net>2024-01-15 18:52:15 -0500
commit39b43b676e9aa8f549fea6fca7a6b7fd7891de69 (patch)
tree2559e89a4398c5bbe278c01f7549a9cfde3b6d7f /lib/lib8tion/scale8.h
parent8c8e1ad4d3f6a197cc7a0550940e0c71d84c050e (diff)
remove more unused libraries
Diffstat (limited to 'lib/lib8tion/scale8.h')
-rw-r--r--lib/lib8tion/scale8.h542
1 files changed, 0 insertions, 542 deletions
diff --git a/lib/lib8tion/scale8.h b/lib/lib8tion/scale8.h
deleted file mode 100644
index 9895fd4d79..0000000000
--- a/lib/lib8tion/scale8.h
+++ /dev/null
@@ -1,542 +0,0 @@
-#ifndef __INC_LIB8TION_SCALE_H
-#define __INC_LIB8TION_SCALE_H
-
-///@ingroup lib8tion
-
-///@defgroup Scaling Scaling functions
-/// Fast, efficient 8-bit scaling functions specifically
-/// designed for high-performance LED programming.
-///
-/// Because of the AVR(Arduino) and ARM assembly language
-/// implementations provided, using these functions often
-/// results in smaller and faster code than the equivalent
-/// program using plain "C" arithmetic and logic.
-///@{
-
-/// scale one byte by a second one, which is treated as
-/// the numerator of a fraction whose denominator is 256
-/// In other words, it computes i * (scale / 256)
-/// 4 clocks AVR with MUL, 2 clocks ARM
-LIB8STATIC_ALWAYS_INLINE uint8_t scale8( uint8_t i, fract8 scale)
-{
-#if SCALE8_C == 1
-#if (FASTLED_SCALE8_FIXED == 1)
- return (((uint16_t)i) * (1+(uint16_t)(scale))) >> 8;
-#else
- return ((uint16_t)i * (uint16_t)(scale) ) >> 8;
-#endif
-#elif SCALE8_AVRASM == 1
-#if defined(LIB8_ATTINY)
-#if (FASTLED_SCALE8_FIXED == 1)
- uint8_t work=i;
-#else
- uint8_t work=0;
-#endif
- uint8_t cnt=0x80;
- asm volatile(
-#if (FASTLED_SCALE8_FIXED == 1)
- " inc %[scale] \n\t"
- " breq DONE_%= \n\t"
- " clr %[work] \n\t"
-#endif
- "LOOP_%=: \n\t"
- /*" sbrc %[scale], 0 \n\t"
- " add %[work], %[i] \n\t"
- " ror %[work] \n\t"
- " lsr %[scale] \n\t"
- " clc \n\t"*/
- " sbrc %[scale], 0 \n\t"
- " add %[work], %[i] \n\t"
- " ror %[work] \n\t"
- " lsr %[scale] \n\t"
- " lsr %[cnt] \n\t"
- "brcc LOOP_%= \n\t"
- "DONE_%=: \n\t"
- : [work] "+r" (work), [cnt] "+r" (cnt)
- : [scale] "r" (scale), [i] "r" (i)
- :
- );
- return work;
-#else
- asm volatile(
-#if (FASTLED_SCALE8_FIXED==1)
- // Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
- "mul %0, %1 \n\t"
- // Add i to r0, possibly setting the carry flag
- "add r0, %0 \n\t"
- // load the immediate 0 into i (note, this does _not_ touch any flags)
- "ldi %0, 0x00 \n\t"
- // walk and chew gum at the same time
- "adc %0, r1 \n\t"
-#else
- /* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
- "mul %0, %1 \n\t"
- /* Move the high 8-bits of the product (r1) back to i */
- "mov %0, r1 \n\t"
- /* Restore r1 to "0"; it's expected to always be that */
-#endif
- "clr __zero_reg__ \n\t"
-
- : "+a" (i) /* writes to i */
- : "a" (scale) /* uses scale */
- : "r0", "r1" /* clobbers r0, r1 */ );
-
- /* Return the result */
- return i;
-#endif
-#else
-#error "No implementation for scale8 available."
-#endif
-}
-
-
-/// The "video" version of scale8 guarantees that the output will
-/// be only be zero if one or both of the inputs are zero. If both
-/// inputs are non-zero, the output is guaranteed to be non-zero.
-/// This makes for better 'video'/LED dimming, at the cost of
-/// several additional cycles.
-LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video( uint8_t i, fract8 scale)
-{
-#if SCALE8_C == 1 || defined(LIB8_ATTINY)
- uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
- // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
- // uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
- return j;
-#elif SCALE8_AVRASM == 1
- uint8_t j=0;
- asm volatile(
- " tst %[i]\n\t"
- " breq L_%=\n\t"
- " mul %[i], %[scale]\n\t"
- " mov %[j], r1\n\t"
- " clr __zero_reg__\n\t"
- " cpse %[scale], r1\n\t"
- " subi %[j], 0xFF\n\t"
- "L_%=: \n\t"
- : [j] "+a" (j)
- : [i] "a" (i), [scale] "a" (scale)
- : "r0", "r1");
-
- return j;
- // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
- // asm volatile(
- // " tst %0 \n"
- // " breq L_%= \n"
- // " mul %0, %1 \n"
- // " mov %0, r1 \n"
- // " add %0, %2 \n"
- // " clr __zero_reg__ \n"
- // "L_%=: \n"
-
- // : "+a" (i)
- // : "a" (scale), "a" (nonzeroscale)
- // : "r0", "r1");
-
- // // Return the result
- // return i;
-#else
-#error "No implementation for scale8_video available."
-#endif
-}
-
-
-/// This version of scale8 does not clean up the R1 register on AVR
-/// If you are doing several 'scale8's in a row, use this, and
-/// then explicitly call cleanup_R1.
-LIB8STATIC_ALWAYS_INLINE uint8_t scale8_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
-{
-#if SCALE8_C == 1
-#if (FASTLED_SCALE8_FIXED == 1)
- return (((uint16_t)i) * ((uint16_t)(scale)+1)) >> 8;
-#else
- return ((int)i * (int)(scale) ) >> 8;
-#endif
-#elif SCALE8_AVRASM == 1
- asm volatile(
- #if (FASTLED_SCALE8_FIXED==1)
- // Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
- "mul %0, %1 \n\t"
- // Add i to r0, possibly setting the carry flag
- "add r0, %0 \n\t"
- // load the immediate 0 into i (note, this does _not_ touch any flags)
- "ldi %0, 0x00 \n\t"
- // walk and chew gum at the same time
- "adc %0, r1 \n\t"
- #else
- /* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
- "mul %0, %1 \n\t"
- /* Move the high 8-bits of the product (r1) back to i */
- "mov %0, r1 \n\t"
- #endif
- /* R1 IS LEFT DIRTY HERE; YOU MUST ZERO IT OUT YOURSELF */
- /* "clr __zero_reg__ \n\t" */
-
- : "+a" (i) /* writes to i */
- : "a" (scale) /* uses scale */
- : "r0", "r1" /* clobbers r0, r1 */ );
-
- // Return the result
- return i;
-#else
-#error "No implementation for scale8_LEAVING_R1_DIRTY available."
-#endif
-}
-
-
-/// This version of scale8_video does not clean up the R1 register on AVR
-/// If you are doing several 'scale8_video's in a row, use this, and
-/// then explicitly call cleanup_R1.
-LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
-{
-#if SCALE8_C == 1 || defined(LIB8_ATTINY)
- uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
- // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
- // uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
- return j;
-#elif SCALE8_AVRASM == 1
- uint8_t j=0;
- asm volatile(
- " tst %[i]\n\t"
- " breq L_%=\n\t"
- " mul %[i], %[scale]\n\t"
- " mov %[j], r1\n\t"
- " breq L_%=\n\t"
- " subi %[j], 0xFF\n\t"
- "L_%=: \n\t"
- : [j] "+a" (j)
- : [i] "a" (i), [scale] "a" (scale)
- : "r0", "r1");
-
- return j;
- // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
- // asm volatile(
- // " tst %0 \n"
- // " breq L_%= \n"
- // " mul %0, %1 \n"
- // " mov %0, r1 \n"
- // " add %0, %2 \n"
- // " clr __zero_reg__ \n"
- // "L_%=: \n"
-
- // : "+a" (i)
- // : "a" (scale), "a" (nonzeroscale)
- // : "r0", "r1");
-
- // // Return the result
- // return i;
-#else
-#error "No implementation for scale8_video_LEAVING_R1_DIRTY available."
-#endif
-}
-
-/// Clean up the r1 register after a series of *LEAVING_R1_DIRTY calls
-LIB8STATIC_ALWAYS_INLINE void cleanup_R1(void)
-{
-#if CLEANUP_R1_AVRASM == 1
- // Restore r1 to "0"; it's expected to always be that
- asm volatile( "clr __zero_reg__ \n\t" : : : "r1" );
-#endif
-}
-
-
-/// scale a 16-bit unsigned value by an 8-bit value,
-/// considered as numerator of a fraction whose denominator
-/// is 256. In other words, it computes i * (scale / 256)
-
-LIB8STATIC_ALWAYS_INLINE uint16_t scale16by8( uint16_t i, fract8 scale )
-{
-#if SCALE16BY8_C == 1
- uint16_t result;
-#if FASTLED_SCALE8_FIXED == 1
- result = (i * (1+((uint16_t)scale))) >> 8;
-#else
- result = (i * scale) / 256;
-#endif
- return result;
-#elif SCALE16BY8_AVRASM == 1
-#if FASTLED_SCALE8_FIXED == 1
- uint16_t result = 0;
- asm volatile(
- // result.A = HighByte( (i.A x scale) + i.A )
- " mul %A[i], %[scale] \n\t"
- " add r0, %A[i] \n\t"
- // " adc r1, [zero] \n\t"
- // " mov %A[result], r1 \n\t"
- " adc %A[result], r1 \n\t"
-
- // result.A-B += i.B x scale
- " mul %B[i], %[scale] \n\t"
- " add %A[result], r0 \n\t"
- " adc %B[result], r1 \n\t"
-
- // cleanup r1
- " clr __zero_reg__ \n\t"
-
- // result.A-B += i.B
- " add %A[result], %B[i] \n\t"
- " adc %B[result], __zero_reg__ \n\t"
-
- : [result] "+r" (result)
- : [i] "r" (i), [scale] "r" (scale)
- : "r0", "r1"
- );
- return result;
-#else
- uint16_t result = 0;
- asm volatile(
- // result.A = HighByte(i.A x j )
- " mul %A[i], %[scale] \n\t"
- " mov %A[result], r1 \n\t"
- //" clr %B[result] \n\t"
-
- // result.A-B += i.B x j
- " mul %B[i], %[scale] \n\t"
- " add %A[result], r0 \n\t"
- " adc %B[result], r1 \n\t"
-
- // cleanup r1
- " clr __zero_reg__ \n\t"
-
- : [result] "+r" (result)
- : [i] "r" (i), [scale] "r" (scale)
- : "r0", "r1"
- );
- return result;
-#endif
-#else
- #error "No implementation for scale16by8 available."
-#endif
-}
-
-/// scale a 16-bit unsigned value by a 16-bit value,
-/// considered as numerator of a fraction whose denominator
-/// is 65536. In other words, it computes i * (scale / 65536)
-
-LIB8STATIC uint16_t scale16( uint16_t i, fract16 scale )
-{
- #if SCALE16_C == 1
- uint16_t result;
-#if FASTLED_SCALE8_FIXED == 1
- result = ((uint32_t)(i) * (1+(uint32_t)(scale))) / 65536;
-#else
- result = ((uint32_t)(i) * (uint32_t)(scale)) / 65536;
-#endif
- return result;
-#elif SCALE16_AVRASM == 1
-#if FASTLED_SCALE8_FIXED == 1
- // implemented sort of like
- // result = ((i * scale) + i ) / 65536
- //
- // why not like this, you may ask?
- // result = (i * (scale+1)) / 65536
- // the answer is that if scale is 65535, then scale+1
- // will be zero, which is not what we want.
- uint32_t result;
- asm volatile(
- // result.A-B = i.A x scale.A
- " mul %A[i], %A[scale] \n\t"
- // save results...
- // basic idea:
- //" mov %A[result], r0 \n\t"
- //" mov %B[result], r1 \n\t"
- // which can be written as...
- " movw %A[result], r0 \n\t"
- // Because we're going to add i.A-B to
- // result.A-D, we DO need to keep both
- // the r0 and r1 portions of the product
- // UNlike in the 'unfixed scale8' version.
- // So the movw here is needed.
- : [result] "=r" (result)
- : [i] "r" (i),
- [scale] "r" (scale)
- : "r0", "r1"
- );
-
- asm volatile(
- // result.C-D = i.B x scale.B
- " mul %B[i], %B[scale] \n\t"
- //" mov %C[result], r0 \n\t"
- //" mov %D[result], r1 \n\t"
- " movw %C[result], r0 \n\t"
- : [result] "+r" (result)
- : [i] "r" (i),
- [scale] "r" (scale)
- : "r0", "r1"
- );
-
- const uint8_t zero = 0;
- asm volatile(
- // result.B-D += i.B x scale.A
- " mul %B[i], %A[scale] \n\t"
-
- " add %B[result], r0 \n\t"
- " adc %C[result], r1 \n\t"
- " adc %D[result], %[zero] \n\t"
-
- // result.B-D += i.A x scale.B
- " mul %A[i], %B[scale] \n\t"
-
- " add %B[result], r0 \n\t"
- " adc %C[result], r1 \n\t"
- " adc %D[result], %[zero] \n\t"
-
- // cleanup r1
- " clr r1 \n\t"
-
- : [result] "+r" (result)
- : [i] "r" (i),
- [scale] "r" (scale),
- [zero] "r" (zero)
- : "r0", "r1"
- );
-
- asm volatile(
- // result.A-D += i.A-B
- " add %A[result], %A[i] \n\t"
- " adc %B[result], %B[i] \n\t"
- " adc %C[result], %[zero] \n\t"
- " adc %D[result], %[zero] \n\t"
- : [result] "+r" (result)
- : [i] "r" (i),
- [zero] "r" (zero)
- );
-
- result = result >> 16;
- return result;
-#else
- uint32_t result;
- asm volatile(
- // result.A-B = i.A x scale.A
- " mul %A[i], %A[scale] \n\t"
- // save results...
- // basic idea:
- //" mov %A[result], r0 \n\t"
- //" mov %B[result], r1 \n\t"
- // which can be written as...
- " movw %A[result], r0 \n\t"
- // We actually don't need to do anything with r0,
- // as result.A is never used again here, so we
- // could just move the high byte, but movw is
- // one clock cycle, just like mov, so might as
- // well, in case we want to use this code for
- // a generic 16x16 multiply somewhere.
-
- : [result] "=r" (result)
- : [i] "r" (i),
- [scale] "r" (scale)
- : "r0", "r1"
- );
-
- asm volatile(
- // result.C-D = i.B x scale.B
- " mul %B[i], %B[scale] \n\t"
- //" mov %C[result], r0 \n\t"
- //" mov %D[result], r1 \n\t"
- " movw %C[result], r0 \n\t"
- : [result] "+r" (result)
- : [i] "r" (i),
- [scale] "r" (scale)
- : "r0", "r1"
- );
-
- const uint8_t zero = 0;
- asm volatile(
- // result.B-D += i.B x scale.A
- " mul %B[i], %A[scale] \n\t"
-
- " add %B[result], r0 \n\t"
- " adc %C[result], r1 \n\t"
- " adc %D[result], %[zero] \n\t"
-
- // result.B-D += i.A x scale.B
- " mul %A[i], %B[scale] \n\t"
-
- " add %B[result], r0 \n\t"
- " adc %C[result], r1 \n\t"
- " adc %D[result], %[zero] \n\t"
-
- // cleanup r1
- " clr r1 \n\t"
-
- : [result] "+r" (result)
- : [i] "r" (i),
- [scale] "r" (scale),
- [zero] "r" (zero)
- : "r0", "r1"
- );
-
- result = result >> 16;
- return result;
-#endif
-#else
- #error "No implementation for scale16 available."
-#endif
-}
-///@}
-
-///@defgroup Dimming Dimming and brightening functions
-///
-/// Dimming and brightening functions
-///
-/// The eye does not respond in a linear way to light.
-/// High speed PWM'd LEDs at 50% duty cycle appear far
-/// brighter then the 'half as bright' you might expect.
-///
-/// If you want your midpoint brightness leve (128) to
-/// appear half as bright as 'full' brightness (255), you
-/// have to apply a 'dimming function'.
-///@{
-
-/// Adjust a scaling value for dimming
-LIB8STATIC uint8_t dim8_raw( uint8_t x)
-{
- return scale8( x, x);
-}
-
-/// Adjust a scaling value for dimming for video (value will never go below 1)
-LIB8STATIC uint8_t dim8_video( uint8_t x)
-{
- return scale8_video( x, x);
-}
-
-/// Linear version of the dimming function that halves for values < 128
-LIB8STATIC uint8_t dim8_lin( uint8_t x )
-{
- if( x & 0x80 ) {
- x = scale8( x, x);
- } else {
- x += 1;
- x /= 2;
- }
- return x;
-}
-
-/// inverse of the dimming function, brighten a value
-LIB8STATIC uint8_t brighten8_raw( uint8_t x)
-{
- uint8_t ix = 255 - x;
- return 255 - scale8( ix, ix);
-}
-
-/// inverse of the dimming function, brighten a value
-LIB8STATIC uint8_t brighten8_video( uint8_t x)
-{
- uint8_t ix = 255 - x;
- return 255 - scale8_video( ix, ix);
-}
-
-/// inverse of the dimming function, brighten a value
-LIB8STATIC uint8_t brighten8_lin( uint8_t x )
-{
- uint8_t ix = 255 - x;
- if( ix & 0x80 ) {
- ix = scale8( ix, ix);
- } else {
- ix += 1;
- ix /= 2;
- }
- return 255 - ix;
-}
-
-///@}
-#endif